Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2320082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455385

RESUMO

The creation of self-healing polymers with superior strength and stretchability from biodegradable materials is attracting increasing attention. In this study, we synthesized new biomass-derived cellulose acetate (CA) derivatives by ring-opening graft polymerization of δ-valerolactone followed by the introduction of ureidopyrimidinone (Upy) groups in the polymer side chains. Due to the semicrystalline aliphatic characteristics of the side chain poly(δ-valerolactone) (PVL) and quadruple hydrogen bonds formed by the Upy groups, the stretchability of the resulting polymers was significantly enhanced. Moreover, the shape memory ability and self-healing property (58.3% of self-healing efficiency) were successfully imparted to the polymer. This study demonstrates the great significance of using biomass sources to create self-healing polymers.


This paper describes the first successful demonstration of self-healing polymers with superior strength and stretchability from a biodegradable material, cellulose acetate (CA). We initially introduced the ureidopyrimidinone (Upy) groups in the side chains of CA. However, the resulting polymer was not soluble and processable. In order to solve this issue, a new strategy based on the ring-opening graft polymerization of δ-valerolactone followed by the introduction of ureidopyrimidinone (Upy) groups was adopted. Due to the semicrystalline aliphatic characteristics of the side chain poly(δ-valerolactone) (PVL), the resulting polymers were soluble and processable. In addition, the quadruple hydrogen bonds formed by the Upy groups enhanced the stretchability of the resulting polymers. Moreover, the shape memory ability and self-healing property were successfully achieved due to the presence of PVL and Upy. The developed new strategy can be applied to a variety of polymers including biomass-based polymers and materials.

2.
J Am Chem Soc ; 145(43): 23794-23801, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851530

RESUMO

Sacrificial chemical bonds have been used effectively to increase the toughness of elastomers because such bonds dissociate at forces significantly below the fracture limit of the primary load-bearing bonds, thereby dissipating local stress. This approach owes much of its success to the ability to adjust the threshold force at which the sacrificial bonds fail at the desired rate, for example, by selecting either covalent or noncovalent sacrificial bonds. Here, we report experimental and computational evidence that a mechanical bond, responsible for the structural integrity of a rotaxane or a catenane, increases the elastomer's fracture strain, stress, and energy as much as a covalent bond of comparable mechanochemical dissociation kinetics. We synthesized and studied 6 polyacrylates cross-linked by either difluorenylsuccinonitrile (DFSN), which is an established sacrificial mechanochromic moiety; a [2]rotaxane, whose stopper allows its wheel to dethread on the same subsecond time scale as DFSN dissociates when either is under tensile force of 1.5-2 nN; a structurally homologous [2]rotaxane with a much bulkier stopper that is stable at force >5.5 nN; similarly stoppered [3]rotaxanes containing DFSN in their axles; and a control polymer with aliphatic nonsacrificial cross-links. Our data suggest that mechanochemical dethreading of a rotaxane without failure of any covalent bonds may be an important, hitherto unrecognized, contributor to the toughness of some rotaxane-cross-linked polymers and that sacrificial mechanical bonds provide a mechanism to control material fracture behavior independently of the mechanochemical response of the covalent networks, due to their distinct relationships between structure and mechanochemical reactivity.

3.
Soft Matter ; 16(48): 10869-10875, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33210675

RESUMO

Tetra-arm poly(ethylene glycol) (TetraPEG) gels are tough materials whose toughness originates from their uniform network structure. They can be formed by combining the termini of tetra-arm polymers via chemical reactions with high conversion efficiency, such as the Michael addition, condensations using an active ester group, and alkyne-azide cycloadditions. Herein, we report the synthesis of a tetra-PEG gel using a tetra-arm polymer with N-phenylmaleimide moieties at the polymer ends (tetra-N-aryl MA PEG) as a scaffold. Tetra-N-aryl MA PEG can be obtained via a simple maleimidation using the modification agent p-maleimidophenyl isocyanate (PMPI), which directly transforms the hydroxy groups at the polymer ends into reactive N-aryl maleimide groups in a one-pot reaction. The thus-obtained tetra-N-aryl MA PEG was fully characterized using high-performance liquid chromatography (HPLC), matrix-assisted laser desorption ionization time of flight mass spectrometry, and proton nuclear magnetic resonance spectroscopy. HPLC analysis not only demonstrated the high purity of tetra-N-aryl MA PEG and the full conversion of the hydroxy groups, but also provided an effective characterization method for N-aryl maleimide-based PEG using a simple protocol, which enables us quantitative analysis of functionalized polymers with different N-aryl maleimide numbers. Furthermore, we fabricated a TetraPEG gel via Michael addition of the obtained tetra-N-aryl MA and thiol-terminated TetraPEGs. Thus, this report presents the application of tetra-N-aryl MA PEG as an effective precursor to obtain a uniform network structure and a method for its characterization; these results should provide support for the development of functional molecules, soft materials, and further functional materials based on the uniform-network-structure concept.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...