Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 301: 120616, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533758

RESUMO

AIMS: We aimed to investigate whether Saccharomyces boulardii strain might exert renoprotective effects by modulating renal renin angiotensin system, oxidative stress and intestinal microbiota in streptozotocin-diabetic mice. MAIN METHODS: Thirty-six C57BL/6 male mice were divided into four groups: control (C), control + probiotic (CP), diabetes (D), diabetes + probiotic (DP). Diabetes was induced by one intraperitoneal injection of streptozotocin and Saccharomyces boulardii was administered by oral gavage for 8 weeks. Blood glucose, albuminuria and urinary volume were measured. Renal levels of angiotensin peptides (angiotensin I, II and 1-7) and the activities of angiotensin-converting enzyme (ACE) and ACE2 were determined, besides that, renal morphology, serotonin and dopamine levels and also microbiota composition were analyzed. KEY FINDINGS: Probiotics significantly increased C-peptide secretion and reduced blood glucose of diabetic animals. Saccharomyces boulardii also improved renal antioxidant defense, restored serotonin and dopamine concentration, and activated the renin-angiotensin system (RAS) vasodilator and antifibrotic axis. The modulation of these markers was associated with a beneficial impact on glomerular structure and renal function of diabetic treated animals. The phenotypic changes induced by Saccharomyces boulardii were also related to modulation of intestinal microbiota, evidenced by the decreased abundance of Proteus and Escherichia-Shigella, considered diabetic nephropathy biomarkers. SIGNIFICANCE: Therefore, probiotic administration to streptozotocin-induced diabetic mice improves kidney structure and function in a murine model and might represent a reasonable strategy to counteract nephropathy-associated maladaptive responses in diabetes.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Microbiota , Saccharomyces boulardii , Angiotensina I/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Sistema Renina-Angiotensina/fisiologia , Saccharomyces boulardii/metabolismo , Serotonina/metabolismo , Estreptozocina/metabolismo
2.
Sci Rep ; 11(1): 9189, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911129

RESUMO

Type 1 diabetes (T1DM) is a chronic disease characterized by hyperglycemia due to a deficiency in endogenous insulin production, resulting from pancreatic beta cell death. Persistent hyperglycemia leads to enhanced oxidative stress and liver injury. Several studies have evaluated the anti-diabetic and protective effects of probiotic strains in animal models. In the present study, we investigated, through histopathological and biochemical analyses, the effects of eight weeks of administration of Saccharomyces boulardii (S. boulardii) yeast on the liver of streptozotocin (STZ) induced diabetic C57BL/6 mice. Our results demonstrated that S. boulardii attenuates hepatocytes hydropic degeneration and hepatic vessels congestion in STZ-induced diabetic mice. The treatment attenuated the oxidative stress in diabetic mice leading to a reduction of carbonylated protein concentration and increased activity of antioxidant enzymes superoxide dismutase and glutathione peroxidase, compared to untreated diabetic animals. The results also show the beneficial influence of S. boulardii in regulating the hepatic concentration of renin angiotensin system (RAS) peptides. Therefore, our results demonstrated that S. boulardii administration to STZ-induced diabetic mice reduces oxidative stress and normalizes the concentration of RAS peptides, supporting the hypothesis that this yeast may have a role as a potential adjunctive therapy to attenuate diabetes-induced liver injury.


Assuntos
Diabetes Mellitus Experimental/complicações , Hepatopatias/etiologia , Hepatopatias/terapia , Sistema Renina-Angiotensina/fisiologia , Saccharomyces boulardii , Alanina Transaminase/sangue , Angiotensinas/metabolismo , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/sangue , Glicemia/metabolismo , Peso Corporal , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/terapia , Hepatócitos/patologia , Peroxidação de Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Estreptozocina
3.
Kidney360 ; 2(3): 534-541, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35369015

RESUMO

Sphingolipids are now considered not only as constitutional components of the cellular membrane but also as essential bioactive factors regulating development and physiologic functions. Ceramide is a vital intermediate of sphingolipid metabolism, synthesized by de novo and salvage pathways, producing multiple types of sphingolipids and their metabolites. Although mutations in gene-encoding enzymes regulating sphingolipid synthesis and metabolism cause distinct diseases, an abnormal sphingolipid metabolism contributes to various pathologic conditions, including kidney diseases. Excessive accumulation of glycosphingolipids and promotion of the ceramide salvage and sphingosine-1-phosphate (S1P) pathways are found in the damaged kidney. Acceleration of the sphingosine kinase/S1P/S1P receptor (SphK/S1P/S1PR) axis plays a central role in deteriorating kidney functions. The SphK/S1P/S1PR signaling impairment is also found during pregnancy complications, such as preeclampsia and intrauterine growth restriction (IUGR). This mini-review discusses the current state of knowledge regarding the role of sphingolipid metabolism on kidney diseases, and the possible involvement of preeclampsia and IUGR conditions.


Assuntos
Nefropatias , Pré-Eclâmpsia , Ceramidas/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Humanos , Pré-Eclâmpsia/genética , Gravidez , Esfingolipídeos/metabolismo
5.
Physiol Rep ; 7(11): e14105, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31165585

RESUMO

The kidney is an important target of the renin-ANG-aldosterone system (RAAS). To date, several studies have demonstrated the existence of a local RAAS in various tissues, including the renal tissue. The mineralocorticoid aldosterone is known to play a critical role in the classical RAAS; however, its effect on mesangial cells (MCs) remains to be elucidated. Based on this, our aim was to investigate whether aldosterone stimulation can modulate the intracellular RAAS of immortalized human MCs by evaluating ANG-converting enzyme (ACE)/ANG II/ANG II receptor type 1 (AT1) and ANG-converting enzyme 2 (ACE2)/ANG (1-7)/MAS receptor axes. To realise this, protein expression, enzyme activity, and immunofluorescence were performed under aldosterone stimulation and in the presence of the mineralocorticoid receptor (MR) antagonist spironolactone (SPI). We observed that high doses of aldosterone increase ACE activity. The effect of aldosterone on the catalytic activity of ACE was completely abolished with the pretreatment of SPI suggesting that the aldosterone-induced cell injuries through ANG II release were attenuated. Aldosterone treatment also decreased the expression of MAS receptor, but did not alter the expression or the catalytic activity of ACE 2 and ANG (1-7) levels. Spironolactone modulated the localization of ANG II and AT1 receptor and decreased ANG (1-7) and MAS receptor levels. Our data suggest that both aldosterone and the MR receptor antagonist can modulate both of these axes and that spironolactone can protect MCs from the damage induced by aldosterone.


Assuntos
Aldosterona/farmacologia , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Espironolactona/farmacologia , Angiotensina I/genética , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Células Cultivadas , Glicosilação/efeitos dos fármacos , Humanos , Células Mesangiais/citologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Front Nutr ; 6: 60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31131281

RESUMO

Aim: We investigated the kidney morphofunctional consequences of high-fat diet intake since post-weaning in adult rats. Main Methods: Male Wistar rats were divided into two groups: ND (normal diet; n = 10) and HD (high-fat diet; n = 10). The high-fat diet was introduced post-weaned and animals were followed for 8 weeks. Key Findings: HD group did not change body weight gain even though food consumption has decreased with no changes in caloric consumption. The HD group showed glucose intolerance and insulin resistance. The glomerular filtration rate (GFR) was decreased in vivo (ND: 2.8 ± 1.01; HD: 1.1 ± 0.14 ml/min) and in the isolated perfusion method (34% of decrease). Renal histological analysis showed a retraction in glomeruli and an increase in kidney lipid deposition (ND: 1.5 ± 0.17 HD: 5.9 ± 0.06%). Furthermore, the high-fat diet consumption increased the pro-inflammatory cytokines IL-6 (ND: 1,276 ± 203; HD: 1,982 ± 47 pg/mL/mg) and IL-1b (ND: 97 ± 12 HD: 133 ± 5 pg/mL/mg) without changing anti-inflammatory cytokine IL-10. Significance: Our study provides evidence that high-fat diet consumption leads to renal lipid accumulation, increases inflammatory cytokines, induces glomeruli retraction, and renal dysfunction. These damages observed in the kidney could be associated with an increased risk to advanced CKD in adulthood suggesting that reduction of high-fat ingestion during an early period of life can prevent metabolic disturbances and renal lipotoxicity.

7.
Methods Cell Biol ; 149: 215-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30616822

RESUMO

Maintenance of normal blood pressure under conditions of drug treatment is a measure of system-wide neuro-hormonal controls and electrolyte/fluid volume homeostasis in the body. With increased interest in designing and evaluating novel drugs that may functionally select or allosterically modulate specific GPCR signaling pathways, techniques that allow us to measure acute and long-term effects on blood pressure are very important. Therefore, this chapter describes techniques to measure acute and long-term impact of novel GPCR ligands on blood pressure regulation. We will use the angiotensin type 1 receptor, a powerful blood pressure regulating GPCR, in detailing the methodology. Normal blood pressure maintenance depends upon dynamic modulation of angiotensin type 1 receptor activity by the hormone peptide angiotensin II. Chronic activation of angiotensin type 1 receptor creates hypertension and related cardiovascular disease states which are treated with angiotensin type 1 receptor blockers (ARBs). Thus, a prototype for evaluation of blood pressure control under experimental evaluation of novel drugs.


Assuntos
Pressão Sanguínea/fisiologia , Vasos Sanguíneos/fisiologia , Homeostase , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Ligantes , Camundongos , Receptor Tipo 1 de Angiotensina/metabolismo
8.
Front Physiol ; 9: 1433, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364140

RESUMO

Overconsumption of fructose leads to metabolic syndrome as a result of hypertension, insulin resistance, and hyperlipidemia. In this study, the renal function of animals submitted to high fructose intake was analyzed from weaning to adulthood using in vivo and ex vivo methods, being compared with a normal control group. We investigated in ex vivo model of the role of the renin Angiotensin system (RAS) in the kidney. The use of perfused kidney from animals submitted to 8-week fructose treatment showed that high fructose intake caused metabolic and cardiovascular alterations that were consistent with other studies. Moreover, the isolated perfused kidneys obtained from rats under high fructose diet showed a 33% increase in renal perfusion pressure throughout the experimental period due to increased renal vascular resistance and a progressive fall in the glomerular filtration rate, which reached a maximum of 64% decrease. Analysis of RAS peptides in the high fructose group showed a threefold increase in the renal concentrations of angiotensin I (Ang I) and a twofold increase in angiotensin II (Ang II) levels, whereas no change in angiotensin 1-7 (Ang 1-7) was observed when compared with the control animals. We did not detect changes in angiotensin converting enzyme (ACE) activity in renal tissues, but there is a tendency to decrease. These observations suggest that there are alternative ways of producing Ang II in this model. Chymase the enzyme responsible for Ang II formation direct from Ang I was increased in renal tissues in the fructose group, confirming the alternative pathway for the formation of this peptide. Neprilysin (NEP) the Ang 1-7 forming showed a significant decrease in activity in the fructose vs. control group, and a tendency of reduction in ACE2 activity. Thus, these results suggest that the Ang 1-7 vasodilator peptide formation is impaired in this model contributing with the increase of blood pressure. In summary, rats fed high fructose affect renal RAS, which may contribute to several deleterious effects of fructose on the kidneys and consequently an increase in blood pressure.

9.
Atherosclerosis ; 274: 67-76, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29753230

RESUMO

BACKGROUND AND AIMS: Chronic ethanol consumption is associated with hypertension and atherosclerosis. Vascular oxidative stress is described as an important mechanism whereby ethanol predisposes to atherosclerosis. We hypothesized that nebivolol would prevent ethanol-induced hypertension and vascular oxidative stress. METHODS: Male Wistar rats were treated with ethanol 20% (vol./vol.) or nebivolol (10 mg/kg/day, p. o., gavage), a selective ß1-adrenergic receptor antagonist. RESULTS: Ethanol-induced increase in blood pressure and in the circulating levels of adrenaline and noradrenaline was prevented by nebivolol. Similarly, nebivolol prevented ethanol-induced increase in plasma levels of renin, angiotensin I and II. Chronic ethanol consumption increased the aortic levels of superoxide anion (O2-), thiobarbituric acid reactive species (TBARS) as well as the expression of Nox1 and nitrotyrosine immunostaining in the rat aorta. Treatment with nebivolol prevented these responses. The decrease in aortic levels of nitrate/nitrite (NOx) induced by ethanol was prevented by the treatment with nebivolol. Finally, nebivolol attenuated ethanol-induced increase in phenylephrine- and noradrenaline-induced contraction of endothelium-intact and endothelium-denuded aortic rings. CONCLUSIONS: The novelty of our study is that nebivolol prevented ethanol-induced hypertension and vascular oxidative stress. Additionally, we showed that the sympathetic nervous system (SNS) and the renin-angiotensin system (RAS) are important endogenous mediators of the cardiovascular effects of ethanol.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Anti-Hipertensivos/farmacologia , Aorta Torácica/efeitos dos fármacos , Pressão Arterial/efeitos dos fármacos , Etanol , Hipertensão/prevenção & controle , Nebivolol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Aorta Torácica/inervação , Aorta Torácica/metabolismo , Biomarcadores/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Epinefrina/sangue , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Norepinefrina/sangue , Ratos Wistar , Sistema Renina-Angiotensina/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Tirosina/análogos & derivados , Tirosina/metabolismo
10.
J Am Soc Hypertens ; 12(7): 561-573, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29680225

RESUMO

We evaluated the possible mechanisms underlying the oxidative stress induced by ethanol withdrawal. With this purpose, we verified the role of AT1 receptors in such response. Male Wistar rats were treated with ethanol 3%-9% (vol./vol.) for 21 days. Ethanol withdrawal was induced by abrupt discontinuation of the treatment. Experiments were performed 48 hours after ethanol discontinuation. Increased plasma levels of angiotensin II were detected after ethanol withdrawal. Losartan (10 mg/kg; p.o. gavage), a selective AT1 receptor antagonist, impeded the increase in blood pressure induced by ethanol withdrawal. Increased lipoperoxidation and superoxide anion (O2-) levels were detected in aortas after ethanol withdrawal, and losartan prevented these responses. Decreased hydrogen peroxide and nitrate/nitrite concentration were detected in aortas after ethanol withdrawal, and losartan prevented these effects. Nitrotyrosine immunostaining in the rat aorta was increased after ethanol withdrawal, and AT1 blockade impeded this response. Increased expression of PKCδ and p47phox was detected after ethanol withdrawal, and treatment with losartan prevented these responses. Our study provides novel evidence that ethanol withdrawal increases vascular oxidative stress and blood pressure through AT1-dependent mechanisms. These findings highlight the importance of angiotensin II in ethanol withdrawal-induced increase in blood pressure and vascular oxidative damage.

11.
Front Med (Lausanne) ; 5: 365, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30729109

RESUMO

Background: Tonin, a serine-protease that forms Angiotensin II (AngII) from angiotensinogen, is increased in failing human heart samples. Increased blood pressure (BP) and decreased heart rate (HR) variabilities are associated with higher risk of cardiovascular morbidity. Losartan has been used to reduce hypertension and, therefore, lowers the risk of fatal and non-fatal cardiovascular events. Determination of tonin's impact on BP and HR variabilities as well as the impact of losartan remain questions to be elucidated. Aim: Evaluation of cardiovascular autonomic profile in transgenic mice overexpressing the rat tonin enzyme TGM'(rton) and the impact of AT1 receptor blocker, losartan. Methods: Male C57BL/6 (WT) and TGM'(rTon) mice were cannulated for recording BP (Windaq, 4 MHz) for 30 min at baseline and 30 min after losartan injection (20 mg/kg). BP and HR variabilities were analyzed in time and frequency domain method. Low-frequency (LF) and high-frequency (HF) components were identified for sympathetic and parasympathetic modulations analysis. Ang I, AngII, and Ang1-7 were quantified by high performance liquid chromatography method. The total enzymatic activity for AngI, AngII, and Ang1-7 formation was evaluated in the heart and plasma by Liquid chromatography mass spectrometry (LC-MS/MS). Results: At the baseline TGM'(rTon) exhibited higher BP, lower cardiac LF, higher cardiac HF, lower LF/HF, and lower alpha index than wild type (WT). After losartan injection, TGM'(rTon) mice presented an additional decrease in cardiac LF and increase in HF in relation to baseline and WT. In the vasculature, losartan caused decreased in BP and LF of systolic BP in WT mice in relation to its baseline. A similar effect was observed in the BP of TGM'(rTon) mice; however, LF of systolic BP increased compared to baseline. Our data also indicates that AT1R receptor signaling has been altered in TGM'(rTon)mice. Interestingly, the dynamics of the renin-angiotensin system kinetics change, favoring production of Ang1-7. Conclusion: Autonomic evaluation of TGM'(rTon) mice indicates an unclear prognosis for diseases that affect the heart. HR variability in TGM'(rTon) mice indicates high risk of morbidity, and sympathetic and parasympathetic modulation indicate low risk of morbidity. The low risk of morbidity could be the biased production of Ang1-7 in the heart and circulation; however, the altered response of AT1R in the TGM'(rTon) remains to be elucidated, as well aswhether that signaling is pro-protection or pro-pathology.

12.
Am J Physiol Renal Physiol ; 311(3): F496-504, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27252489

RESUMO

Sepsis is an uncontrolled systemic inflammatory response against an infection and a major public health issue worldwide. This condition affects several organs, and, when caused by Gram-negative bacteria, kidneys are particularly damaged. Due to the importance of renin-angiotensin system (RAS) in regulating renal function, in the present study, we aimed to investigate the effects of endotoxemia over the renal RAS. Wistar rats were injected with Escherichia coli lipopolysaccharide (LPS) (4 mg/kg), mimicking the endotoxemia induced by Gram-negative bacteria. Three days after treatment, body mass, blood pressure, and plasma nitric oxide (NO) were reduced, indicating that endotoxemia triggered cardiovascular and metabolic consequences and that hypotension was maintained by NO-independent mechanisms. Regarding the effects in renal tissue, inducible NO synthase (iNOS) was diminished, but no changes in the renal level of NO were detected. RAS was also highly affected by endotoxemia, since renin, angiotensin-converting enzyme (ACE), and ACE2 activities were altered in renal tissue. Although these enzymes were modulated, only angiotensin (ANG) II was augmented in kidneys; ANG I and ANG 1-7 levels were not influenced by LPS. Cathepsin G and chymase activities were increased in the endotoxemia group, suggesting alternative pathways for ANG II formation. Taken together, our data suggest the activation of noncanonical pathways for ANG II production and the presence of renal vasoconstriction and tissue damage in our animal model. In summary, the systemic administration of LPS affects renal RAS, what may contribute for several deleterious effects of endotoxemia over kidneys.


Assuntos
Injúria Renal Aguda/metabolismo , Angiotensina II/metabolismo , Endotoxemia/metabolismo , Rim/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Endotoxemia/induzido quimicamente , Endotoxemia/patologia , Rim/patologia , Lipopolissacarídeos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Peptidil Dipeptidase A/metabolismo , Ratos , Ratos Wistar , Renina/metabolismo , Sistema Renina-Angiotensina/fisiologia
13.
J Diabetes Res ; 2015: 674047, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442284

RESUMO

Population studies have shown an association between diabetic nephropathy (DN) and insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene (ACE in humans, Ace in mice). The aim was to evaluate the modulation of Ace copies number and diabetes mellitus (DM) on renal RAS and correlate it with indicators of kidney function. Increased number of copies of the Ace gene, associated with DM, induces renal dysfunction. The susceptibility to the development of DN in 3 copies of animals is associated with an imbalance in activity of RAS enzymes leading to increased synthesis of Ang II and Ang-(1-7). Increased concentration of renal Ang-(1-7) appears to potentiate the deleterious effects triggered by Ang II on kidney structure and function. Results also show increased bradykinin concentration in 3 copies diabetic group. Taken together, results indicate that the deleterious effects described in 3 copies diabetic group are, at least in part, due to a combination of factors not usually described in the literature. Thus, the data presented here show up innovative and contribute to understanding the complex mechanisms involved in the development of DN, in order to optimize the treatment of patients with this complication.


Assuntos
Angiotensina I/metabolismo , Bradicinina/metabolismo , Nefropatias Diabéticas/genética , Regulação da Expressão Gênica , Rim/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Glicemia/análise , Peso Corporal , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/metabolismo , Dosagem de Genes , Predisposição Genética para Doença , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/genética , Sistema Renina-Angiotensina/efeitos dos fármacos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...