Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 11(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34827850

RESUMO

A 60-day experiment was designed to assess the effect of different ratios of fish meal (FM): camelina meal plant protein (CM) on growth response and relative gene expression of growth-promoting factors, feed utilization potency, digestive enzymes activities, apparent digestibility (ADC), stress response, non-specific immunity of Pagrus major. Four isonitrogenous (490.7 g/kg of crude protein) and isolipidic (91.5 g/kg total lipid) experimental diets were formulated and designated as camelina meal (CM0), soyabean meal (SBM20.5), CM20.5, and CM33 based on protein contents. At the end of the feed trial, significantly higher (p < 0.05) weight gain, specific growth rate, and feed intake but lower feed conversion ratio were recorded in fish fed CM0, SBM20.5, and CM20.5 than fish fed CM33. The lowest growth, feed utilization, enzyme activity, and digestibility were recorded in fish fed CM33. Significantly higher pepsin, amylase, and protease activities were observed in fish fed CM0, SBM20.5, and CM20.5 diets than fish fed CM33. The highest ADC of protein was recorded in fish fed CM0, SBM20.5, and CM20.5 diets. Hematocrit levels were depressed CM33 while total serum protein, total cholesterol, triglyceride, blood urea nitrogen, total bilirubin, aspartate aminotransferase, and alanine aminotransferase were not significantly changed by the inclusion of CM. Non-specific immune variables (lysozyme activity, peroxidase activity in serum and nitro blue tetrazolium) in fish fed CM0, SBM20.5, and CM20.5 were significantly higher than in fish fed CM33 diet. The superoxide dismutase of fish fed CM20.5 was not significantly different from CM0 and SBM20.5 (p > 0.05). Catalase and low salinity stress test show that CM0, SBM20.5, and CM20.5 were not significantly (p > 0.05) different, while CM33 was significantly lower than the rest of the diets. TBARs show that CM20.5 and CM33 diets were significantly different (p < 0.05), but CM20.5 was not significantly different from SBM20.5. Significantly higher hepatic IGF-1 and IGF-2 mRNA expression was found in fish-fed diet groups CM0, SBM20.5, and CM20.5 than fish fed CM33. The present study indicated that the addition of CM up 205 kg/kg to diet maintains growth, digestive enzymes, nutrient digestibility, immunity, stress resistance, and feed utilization efficiency of red sea bream.

2.
Animals (Basel) ; 11(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359117

RESUMO

A 56-day feeding trial to evaluate the responses of red seabream (initial weight: 1.8 ± 0.02 g) to the substitution of fish oil (FO) with camelina oil (CO) at different ratios was conducted. The control diet formulated at 46% CP (6F0C) contained only FO without CO; from the second to the fifth diet, the FO was substituted with CO at rates of 5:1 (5F1C), 4:2 (4F2C), 3:3 (3F3C), 2:4 (2F4C), and 0:6 (0F6C). The results of the present study showed that up to full substitution of FO with CO showed no significant effect on growth variables BW = 26.2 g-28.3 g), body weight gain (BWG = 1275.5-1365.3%), specific growth rate (SGR = 4.6-4.7), feed intake (FI = 25.6-27.8), feed conversion ratio (FCR = 1.0-1.1), biometric indices condition factor (CF = 2.2-2.4), hepatosomatic index (HSI = 0.9-1.1), viscerasomatic index (VSI = 7.5-9.5), and survival rates (SR = 82.2-100) with different FO substitution levels with CO. Similarly, there were no significant differences (p < 0.05) found in the whole-body composition except for the crude lipid content, and the highest value was observed in the control group (291 g/kg) compared to the other groups FO5CO1 (232 k/kg), FO4CO2 (212 g/kg), FO2CO4 (232 g/kg) and FO0CO6 (244 g/kg). Blood chemistry levels were not influenced in response to test diets: hematocrit (36-33%), glucose (Glu = 78.3-71.3 mg/dL), total protein (T-pro = 3.1-3.8 g/dL), total cholesterol (T-Chol = 196.0-241 mg/dL), blood urea nitrogen (BUN = 9.0-14.6 mg/dL), total bilirubin (T-Bil = 0.4-0.5 mg/dL), triglyceride (TG = 393.3-497.6 mg/dL), alanine aminotransferase test (ALT = 50-65.5 UL/L), aspartate aminotransferase test (AST = 38-69.3 UL/L). A remarkable modulation was observed in catalase (CAT) and superoxide dismutase (SOD) activities in the liver, as CAT and SOD values were lower with the complete FO substitution with CO (0F6C), and the highest values were observed in the control and (4F2C). This study indicates that red seabream may have the ability to maintain LC-PUFAs between tissues and diets, and CO substitution of FO could improve both lipid metabolism and oxidation resistance as well as maintain digestibility. In conclusion, dietary FO can be replaced up to 100% or 95% by CO in the diets of red seabream as long as n-3 HUFA, EPA, and DHA are incorporated at the recommended level.

3.
Fish Physiol Biochem ; 46(6): 2437-2455, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33033967

RESUMO

We evaluated the efficacy of mozuku fucoidan supplementation to alternative dietary proteins used in fish meal (FM) replacement to enhance growth, immunity, and stress resistance of Pagrus major. Seven isonitrogenous (45% protein) experimental diets were formulated where diet 1 (D1) was FM-based control diet. Diets 2 to 7 were formulated by replacing 25, 50, and 75% of FM protein with soy protein isolate (SPI) protein, and each replacement level was supplemented without or with fucoidan at 0.4% for diet groups D2 (FM25), D3 (FM25Fu), D4 (FM50), D5 (FM50Fu), D6 (FM75), and D7(FM75Fu), respectively. Each diet was randomly allocated to triplicate groups of fish (4.1 g) for 56 days. Significantly higher weight gain and specific growth rate were observed in fish fed FM50Fu diet group, and it was not differed (P > 0.05) with fish fed FM25Fu diet group. FM-based control diet showed intermediate value, and it was not differed (P > 0.05) with or without fucoidan-supplemented ≤ 50% FM replacement groups and FM75Fu diet group. Significantly lower growth performances were observed in FM75 diet group. At each replacement level, fucoidan-supplemented groups showed nonsignificant improvement of feed utilization performances. Fish fed fucoidan-supplemented diets showed best condition of oxidative and freshwater stress resistance. Lysozyme activity, NBT, and peroxidase activity showed higher (P > 0.05) values in fucoidan-supplemented groups compared with the non-supplemented groups. Catalase activity was significantly lower in FM75Fu diet group. Catalase activity is significantly influenced by the interaction effects of fucoidan and FM replacement level. In conclusion, fucoidan supplementation could increase the efficiency of utilizing SPI (≥ 75%) without any adverse effects on red sea bream performance.


Assuntos
Proteínas Alimentares/farmacologia , Polissacarídeos/farmacologia , Dourada , Ração Animal , Animais , Catalase/sangue , Dieta/veterinária , Água Doce , Muramidase/sangue , Peroxidase/sangue , Dourada/sangue , Dourada/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos
4.
Fish Physiol Biochem ; 45(1): 439-454, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30291545

RESUMO

We determined the supplementation effects of dietary fucoidan on growth, immune responses, blood characteristics, and oxidative stress resistance of juvenile red sea bream. A fishmeal (FM)-based basal diet supplemented with 0% (D1, control), 0.05% (D2), 0.1% (D3), 0.2% (D4), 0.4% (D5), and 0.8% (D6) mozuku fucoidan to formulate six experimental diets. Each diet was randomly allocated to triplicate groups of fish (3.8 g) for 60 days. Results showed that fish-fed diet D5 showed significantly higher (P < 0.05) growth performance compared to the control (D1). Diet groups D2 to D4 also showed intermediate values compared to D1. Feed conversion efficiency and protein efficiency ratio were significantly higher in diet group D5, which was not significantly different with D3. Fucoidan supplementation increased whole-body lipid, which was significantly higher in the D5 group. Condition factor (CF) was significantly higher in fish fed ≥ 0.2% fucoidan-supplemented diet groups. Diet group D5 and D4 showed significantly lower blood urea nitrogen (BUN) and aspartate aminotransferase (AST) level, respectively. Dietary fucoidan reduced the oxidative stress of fish. Among the measured nonspecific immune parameters, only peroxidase activity (PA) and total serum protein (TSP) were significantly influenced by dietary supplementation and it was higher in D4 group. Fucoidan supplementation reduces thiobarbituric acid reactive substance (TBARS) values numerically and it was lowest in fish-fed diet group D5. Under the present experimental condition, finally, we concluded that 0.3-0.4% dietary fucoidan supplementation enhanced the growth and health performance of red sea bream by increasing growth, immune response, blood characteristics, and oxidative stress resistance.


Assuntos
Antiulcerosos/farmacologia , Suplementos Nutricionais , Estresse Oxidativo/imunologia , Polissacarídeos/farmacologia , Dourada/crescimento & desenvolvimento , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Peroxidação de Lipídeos , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/administração & dosagem , Distribuição Aleatória , Dourada/sangue , Dourada/imunologia
5.
Fish Physiol Biochem ; 45(2): 613-629, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30367428

RESUMO

We assessed the effects of fishmeal (FM) replacement by soy protein concentrate (SPC) with inosine monophosphate (IMP) supplementation on growth, digestibility, immunity, blood health, and stress resistance of red sea bream, Pagrus major. FM protein of a FM-based control diet (FM100) was replaced with 25 (FM75), 50 (FM50), 75 (FM25), and 100% (FM0) by SPC protein, and each replacement group was supplemented with 0.4% IMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (4.8 g) for 56 days. Results demonstrated that fish fed diet groups FM50 and FM75 had significantly the highest final weight, weight gain, specific growth rate, and feed intake. Meanwhile, in comparison to the control, growth performance and feed utilization did not significantly differ with the 75% FM-replaced diet group by SPC with IMP supplementation. Apparent digestibility coefficient of dry matter, protein, and lipid also followed a similar trend. All growth, feed utilization, and digestibility parameters were significantly lower in the FM0 diet group. Triglyceride level was increased (P < 0.05) with the increasing replacement level and it was significantly highest in the FM0 diet group. The fish fed diet groups FM100 and FM50 showed the best condition of oxidative and freshwater stress resistance, respectively. Meanwhile, the groups with up to 75% FM-replaced diet also showed acceptable stress resistance status. Overall, enhanced innate immune responses were observed in the entire FM replaced with IMP-supplemented diet groups in comparison to the control. Considering SGR as a model, the regression analysis determined that 71.7% FM protein could be replaced by SPC protein with IMP supplementation in diets for the growth of red sea bream.


Assuntos
Ração Animal/análise , Suplementos Nutricionais , Produtos Pesqueiros , Glycine max , Inosina Monofosfato/farmacologia , Perciformes/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Imunidade Inata , Inosina Monofosfato/administração & dosagem , Distribuição Aleatória , Salinidade
6.
Fish Shellfish Immunol ; 82: 92-100, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30098446

RESUMO

Both inosine (INO) and vitamin C (l-ascorbic acid, AsA) play important roles in growth performance, feed utilization and health status of fish. Therefore, a 56 days feeding trial was conducted to determine the interactive effects of dietary INO and AsA on growth performance, oxidative status, innate and adaptive immune responses of red sea bream. Fish growth performance and fed utilization parameters were significantly affected by dietary INO supplementation but not by AsA. Fish fed diets with INO at 4 g kg-1 diet in combination of high and low levels of AsA (3.1 g kg-1 and 9.3 g kg-1) produced the highest growth and feed utilization performances. In terms of growth and feed utilization performances no significant interaction effects were observed between INO and AsA. Dietary INO significantly influenced hematocrit, glucose and glutamyl oxaloacetic transaminase (GOT) content of red sea bream meanwhile AsA also significantly influenced hematocrit, glucose, total cholesterol, blood urea nitrogen (BUN) and glutamic-pyruvate transaminase (GPT) content of the test fish. No significant interaction effects was also observed between INO and AsA on measured hematological parameters. Reactive oxygen metabolites (d-ROMs) significantly influenced by both INO and AsA. Fish fed diet groups D1, D4 and D6 showed best oxidative stress resistance. Only INO was a significant factor on nitro-blue-tetrazolium activity (NBT) and bactericidal activity (BA). Neither INO nor AsA was a significant factor on serum catalase activity (CAT), total serum protein (TSP), peroxidase activity (PA) and lysozyme activity (LA). No significant interaction effects was observed between INO and AsA on measured innate immune parameters. Agglutination antibody titer was significantly influenced by dietary supplementation, after 15 days of vaccination but not in 21 days. In the day 15th fish and diet group D3 and D5 showed significantly higher values compared to diet groups control and D1. INO was the only significant factor of increasing agglutination antibody titer in 15 t h day. While AsA was not a significant factor on agglutination antibody titer values in day 15 t h, there was an interaction between dietary INO and AsA levels. Finally under the experimental conditions, fish fed high INO and low AsA levels (4 g kg-1 and 0.31 g kg-1 diet, respectively) showed best growth and feed utilization performance. Simultaneously, low level of INO and high level of AsA (2 g kg-1 and 0.93 g kg-1 diet, respectively) improved blood chemistry and immunological parameters. Furthermore, combined use of INO and AsA is possible to improve hemato-immunological responses of red sea bream.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Ácido Ascórbico/administração & dosagem , Imunidade Inata/efeitos dos fármacos , Inosina/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Dourada/imunologia , Vitaminas/administração & dosagem , Ração Animal/análise , Animais , Análise Química do Sangue/veterinária , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Distribuição Aleatória , Dourada/sangue , Dourada/crescimento & desenvolvimento
7.
Fish Shellfish Immunol ; 75: 253-262, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29360542

RESUMO

This study evaluated the effects of dietary substitution of fishmeal by graded levels of a blend composed of Aspergillus oryzae fermented rapeseed meal [0% (RM0), 25% (RM25), 50% (RM50), 75% (RM75) and 100% (RM100)] on growth performance, haemato-immunological responses and antioxidative status of Pagrus major (average weight 5.5 ±â€¯0.02 g). After 56 days, growth performances were significantly improved in fish fed RM25 diet compared to control (P < 0.05). Meanwhile, up to 50% replacement of fishmeal did not affect growth performance, feed conversion efficiency, protein efficiency ratio, protein apparent digestibility, protease activity, fish somatic indices and survival compared to control. While blood hematocrit and plasma protein were significantly enhanced in groups fed RM0 and RM25 diets, most of the hematological parameters did not change through the trial except glutamic pyruvate transaminase which was significantly increased in RM75 and RM100 groups and blood cholesterol which was gradually decreased with the increasing level of the blend. Interestingly, feeding fish with RM25 and RM50 diets significantly showed enhanced lysozyme, bactericidal and peroxidase activities and fish fed the same diets showed high resistance against oxidative stress (biological antioxidant potential and reactive oxygen metabolites). Additionally, catalase activity and tolerance against low salinity seawater were higher in fish fed RM25 diet. These findings suggested that, at a moderate level (25% and 50%), substitution of fishmeal by the fermented rapeseed meal promoted growth, nutrient utilization, and exerted immune responses and anti-oxidative effects in red sea bream.


Assuntos
Aspergillus oryzae/metabolismo , Brassica napus/química , Imunidade Inata , Probióticos/farmacologia , Dourada/imunologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Dieta/veterinária , Fermentação , Imunidade Inata/efeitos dos fármacos , Estresse Oxidativo , Distribuição Aleatória , Dourada/sangue , Dourada/crescimento & desenvolvimento , Dourada/metabolismo
8.
Fish Physiol Biochem ; 43(1): 179-192, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27542150

RESUMO

Environmental stressors caused by inadequate aquaculture management strategies suppress the immune response of fish and make them more susceptible to diseases. Therefore, efforts have been made to relieve stress in fish by using various functional feed additives in the diet, including probiotics. The present work evaluates the effects of Lactobacillus rhamnosus (LR) on physiological stress response, blood chemistry and mucus secretion of red sea bream (Pagrus major) under low salinity stress. Fish were fed four diets supplemented with LR at [0 (LR0), 1 × 102 (LR1), 1 × 104 (LR2) and 1 × 106 (LR3) cells g-1] for 56 days. Before stress, blood cortisol, urea nitrogen (BUN) and total bilirubin (T-BIL) showed no significant difference (P > 0.05), whereas plasma glucose and triglyceride (TG) of fish-fed LR2 and LR3 diets were significantly lower (P < 0.05) than those of the other groups. Plasma total cholesterol (T-CHO) of fish-fed LR3 diet was significantly (P < 0.05) lower than that of the other groups. Furthermore, total plasma protein, mucus myeloperoxidase activity and the amount of mucus secretion were significantly enhanced in LR-supplemented groups when compared with the control group (P < 0.05). After the application of the low salinity stress test, plasma cortisol, glucose, T-CHO and TG contents in all groups showed an increased trend significantly (P < 0.01) compared to the fish before the stress challenge. However, plasma total protein and the amount of secreted mucus showed a decreased trend in all groups. On the other hand, BUN, T-BIL and mucus myeloperoxidase activity showed no significant difference after exposure to the low salinity stress (P > 0.05). In addition, the fish that received LR-supplemented diets showed significantly higher tolerance against low salinity stress than the fish-fed LR-free diet (P < 0.05). The physiological status and the detected immune responses, including total plasma protein and mucus myeloperoxidase activity in red sea bream, will provide a more comprehensive outlook of the effects of probiotics to relieve stress in fish.


Assuntos
Lacticaseibacillus rhamnosus , Probióticos/farmacologia , Salinidade , Dourada/metabolismo , Animais , Bilirrubina/sangue , Glicemia/análise , Proteínas Sanguíneas/metabolismo , Nitrogênio da Ureia Sanguínea , Colesterol/sangue , Proteínas de Peixes/metabolismo , Hidrocortisona/sangue , Muco/enzimologia , Muco/metabolismo , Peroxidase/metabolismo , Dourada/sangue , Estresse Fisiológico , Triglicerídeos/sangue
9.
Fish Shellfish Immunol ; 57: 96-106, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27539709

RESUMO

The present study explored the dietary administration effects of guanosine monophosphate (GMP) on growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major. A semi-purified basal diet supplemented with 0% (Control), 0.1% (GMP-0.1), 0.2% (GMP-0.2), 0.4% (GMP-0.4) and 0.8% (GMP-0.8) purified GMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The obtained results clearly indicated that, growth performance of red sea bream enhanced by dietary GMP supplementation compared to control and significantly higher final weight was found in fish fed diet group GMP-0.4. Specific growth rate (SGR) and percent weight gain (%WG) also significantly higher in diet group GMP-0.4 in compared to control and it was not differed (P > 0.05) with diet group GMP-0.8. Feed intake significantly increased with the supplementation of GMP. Feed conversion efficiency (FCE) and protein efficiency ratio (PER) also improved (P < 0.05) when fish fed the diets containing GMP and diet group GMP-0.4 showed the significantly higher value in compared to control. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by GMP supplementation and the significantly higher protein digestibility was observed in fish fed diet groups GMP-0.2, GMP-0.4 and GMP-0.8. Among the measured non specific immune parameters peroxidase activity (PA), respiratory burst activity (NBT), Bactericidal activity (BA) were significantly affected by dietary supplementation and highest value obtained in diet group GMP-0.4. Total serum protein, lysozyme activity (LA), and agglutination antibody titer also increased (P > 0.05) by GMP supplementation. In contrast, catalase activity decreased with GMP supplementation. In terms of oxidative stress GMP-0.2 showed best condition with low oxidative stress and high antioxidant level. Moreover, the fish fed GMP supplemented diets had better improvement (P < 0.05) in body protein contents, hepatosomatic index, hematocrit content and glutamyl oxaloacetic transaminase (GOT) and glutamic-pyruvate transaminase (GPT) level than the control group. Supplementation also improved (P < 0.05) freshwater stress resistances. Quadratic regression analysis of WG and LA revealed that, the optimal levels of dietary GMP were 0.45 and 0.48%, respectively, for juvenile red sea bream, which is also in line with the most of the growth performance and health parameters of the fish.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Suplementos Nutricionais , Digestão , Guanosina Monofosfato , Imunidade Inata , Perciformes/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária , Perciformes/crescimento & desenvolvimento , Perciformes/imunologia , Distribuição Aleatória , Estresse Fisiológico
10.
Fish Shellfish Immunol ; 56: 523-533, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27514786

RESUMO

Our study explored the dietary effects of adenosine monophosphate (AMP) to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream. A semi-purified basal diet supplemented with 0% (Control), 0.1% (AMP-0.1), 0.2% (AMP-0.2), 0.4% (AMP-0.4) and 0.8% (AMP-0.8) purified AMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The results indicated that dietary AMP supplements tended to improve growth performances. One of the best ones was found in diet group AMP-0.2, followed by diet groups AMP-0.1, AMP-0.4 and AMP-0.8. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by AMP supplementation and the significantly highest dry matter digestibility was observed in diet group AMP-0.2. Fish fed diet groups AMP-0.2 and AMP-0.4 had significantly higher peroxidase and bactericidal activities than fish fed the control diet. Nitro-blue-tetrazolium (NBT) activity was found to be significantly (P < 0.05) greater in fish fed diet groups AMP-0.4 and AMP-0.8. Total serum protein, lysozyme activity and agglutination antibody titer were also increased (P > 0.05) by dietary supplementation. In contrast, catalase activity decreased with AMP supplementation. Moreover, the fish fed AMP supplemented diets had better improvement (P < 0.05) in body lipid contents, condition factor, hematocrit content and glutamyl oxaloacetic transaminase (GOT) level than the control group. Supplementation also improved both freshwater and oxidative stress resistances. Interestingly, the fish fed diet groups AMP-0.2 and AMP-0.4 showed the least oxidative stress condition. Finally it is concluded that, dietary AMP supplementation enhanced the growth, digestibility, immune response and stress resistance of red sea bream. The regression analysis revealed that a dietary AMP supplementation between 0.2 and 0.4% supported weight gain and lysozyme activity as a marker of immune functions for red sea bream, which is also inline with the most of the growth and health performance parameters of fish under present experimental conditions.


Assuntos
Monofosfato de Adenosina , Fenômenos Fisiológicos da Nutrição Animal/imunologia , Dieta/veterinária , Suplementos Nutricionais , Perciformes/imunologia , Ração Animal/análise , Animais , Digestão/imunologia , Metabolismo Energético/imunologia , Escherichia coli/fisiologia , Imunidade Inata/imunologia , Perciformes/crescimento & desenvolvimento , Perciformes/lesões , Distribuição Aleatória , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/imunologia
11.
Fish Shellfish Immunol ; 54: 266-75, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27095173

RESUMO

The present study evaluated the interactive benefits of dietary administration of heat-killed Lactobacillus plantarum (LP) and vitamin C (VC) on the growth, oxidative status and immune response of red sea bream (Pagrus major). A diet without LP and VC supplements was employed as a control diet. Four other test diets with 0 or 1 g LP kg(-1) combined with 0.5 or 1 g VC kg(-1) (2 × 2 factorial design) were fed to red sea bream (2 ± 0.01 g) for 56 days. A significant interaction was found between LP and VC on final body weight (FNW), weight gain (WG), hematocrit (HCT), serum bactericidal (BA) and lysozyme (LZY) activities, mucus LZY and peroxidase (PA) activities, nitro blue tetrazolium (NBT), catalase, mucus secretion and tolerance against low salinity stress test (LT50) (P < 0.05). In addition, FNW, WG, specific growth rate, feed and protein efficiency ratio, serum (BA, LZY, PA and NBT), mucus (LZY and PA), superoxide dismutase, malondialdehyde and mucus secretion were significantly affected by either LP or VC (P < 0.05). Furthermore, only LP was a significant factor on survival, plasma total cholesterol, mucus BA and alternative complement pathway (P < 0.05). However, VC supplementation affected on HCT and LT50. Interestingly, fish fed with both LP at 1 g kg(-1) diet with VC at 0.5 or 1 g kg(-1) diet showed higher growth, humoral and mucosal immune responses, anti-oxidative status, mucus secretion and LT50 as well as decreased plasma, triglyceride and total cholesterol levels than the fish fed control diet (P < 0.05). These results demonstrated that dietary LP and VC had a significant interaction for red sea bream with the capability of improving growth performance and enhancing stress resistance by immunomodulation.


Assuntos
Ração Animal/análise , Ácido Ascórbico/administração & dosagem , Lactobacillus plantarum/química , Perciformes/fisiologia , Probióticos/administração & dosagem , Administração Oral , Animais , Análise Química do Sangue/veterinária , Dieta/veterinária , Suplementos Nutricionais/análise , Imunidade Humoral , Imunidade nas Mucosas , Perciformes/sangue , Perciformes/crescimento & desenvolvimento , Perciformes/imunologia , Distribuição Aleatória , Estresse Fisiológico/imunologia
12.
Fish Shellfish Immunol ; 49: 275-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26766177

RESUMO

Pagrus major fingerlings (3·29 ± 0·02 g) were fed with basal diet (control) supplemented with Lactobacillus rhamnosus (LR), Lactococcus lactis (LL), and L. rhamnosus + L. lactis (LR + LL) at 10(6) cell g(-1) feed for 56 days. Feeding a mixture of LR and LL significantly increased feed utilization (FER and PER), intestine lactic acid bacteria (LAB) count, plasma total protein, alternative complement pathway (ACP), peroxidase, and mucus secretion compared with the other groups (P < 0.05). Serum lysozyme activity (LZY) significantly increased in LR + LL when compared with the control group. Additionally, fish fed the LR + LL diet showed a higher growth performance (Fn wt, WG, and SGR) and protein digestibility than the groups fed an individual LR or the control diet. Superoxide dismutase (SOD) significantly increased in LR and LR + LL groups when compared with the other groups. Moreover, the fish fed LR or LL had better improvement (P < 0.05) in growth, feed utilization, body protein and lipid contents, digestibility coefficients (dry matter, protein, and lipid), protease activity, total intestine and LAB counts, hematocrit, total plasma protein, biological antioxidant potential, ACP, serum and mucus LZY and bactericidal activities, peroxidase, SOD, and mucus secretion than the control group. Interestingly, fish fed diets with LR + LL showed significantly lower total cholesterol and triglycerides when compared with the other groups (P < 0.05). These data strongly suggest that a mixture of LR and LL probiotics may serve as a healthy immunostimulating feed additive in red sea bream aquaculture.


Assuntos
Microbioma Gastrointestinal , Imunidade Inata , Lacticaseibacillus rhamnosus , Lactococcus lactis , Probióticos , Dourada , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Dourada/crescimento & desenvolvimento , Dourada/imunologia , Dourada/microbiologia
13.
Fish Shellfish Immunol ; 45(1): 33-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25661844

RESUMO

Both heat-killed Lactobacillus plantarum (HK-LP) and ß-glucan (BG) play important roles in growth performance, feed utilization and health status of fish. Therefore, a feeding trial was conducted to determine the interactive effects of dietary HK-LP and BG on growth performance, digestibility, oxidative status and immune response of red sea bream for 56 days. A significant interaction was found between HK-LP and BG on final body weight, total plasma protein, glucose, serum bactericidal activity (BA), total serum protein, serum alternative complement pathway (ACP) activity, protein and dry matter digestibility coefficients (P < 0.05). In addition, body weight gain, specific growth rate, feed intake, protein efficiency ratio as well as serum lysozyme activity, ACP activity and mucus secretion were significantly affected by either HK-LP or BG (P < 0.05). Further, feeding 0.025% HK-LP combined with 0.1% BG significantly increased serum peroxidase activity compared with the other groups (P < 0.05). However, protein body content, somatic parameters, total bilirubin, blood urea nitrogen, glutamyl oxaloacetic transaminase (GOT), glutamic-pyruvate transaminase (GPT), triglycerides and mucus BA were not significantly altered by supplementations (P > 0.05). Interestingly, fish fed with both HK-LP at (0.025 and 0.1%) in combination with BG at (0 and 0.1%) showed higher oxidative stress resistance. Under the experimental conditions, dietary HK-LP and BG had a significant interaction on enhancing the growth, digestibility and immune responses of red sea bream.


Assuntos
Imunidade Inata/efeitos dos fármacos , Lactobacillus plantarum/química , Perciformes/fisiologia , Probióticos/farmacologia , beta-Glucanas/farmacologia , Ração Animal/análise , Animais , Análise Química do Sangue/veterinária , Dieta/veterinária , Digestão/efeitos dos fármacos , Temperatura Alta , Perciformes/crescimento & desenvolvimento , Perciformes/imunologia , Probióticos/administração & dosagem , beta-Glucanas/administração & dosagem
14.
Biomed Res Int ; 2015: 514196, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705667

RESUMO

A 56-day feeding trial was conducted to evaluate the effects of supplemented diets with heat-killed Lactobacillus plantarum (HK-LP) with graded levels of soybean meal (SBM) on growth, digestibility, blood parameters, and immune response of Seriola dumerili (initial weight, 25.05 ± 0.1 g). Seven isonitrogenous and isolipidic practical diets were formulated to contain 0%, 15%, 30%, and 45% SBM, and each SBM level was supplemented with HK-LP at 0.0 and 0.1%. Fish fed diet which contains 30% SBM with HK-LP grew significantly faster than the other groups with notable feed intake and protein retention. Further, protein gain, whole body protein content, protease activity, protein, and lipid digestibility were significantly increased for all fish groups except for fish fed diet which contains 45% SBM with or without HK-LP. Interestingly, lysozyme activity was significantly enhanced in fish fed diets that contain 15% and 30% SBM with HK-LP. Hematocrit, peroxidase, and bactericidal activities revealed a significant increase in 30% SBM with HK-LP group. In addition, fish fed diets which contain 0% and 30% SBM with HK-LP showed higher tolerance against low-salinity stress compared with other groups. In conclusion, the addition of HK-LP to amberjack diets appeared to improve SBM utilization, immune response, and stress resistance.


Assuntos
Ração Animal , Digestão/fisiologia , Perciformes , Animais , Dieta , Suplementos Nutricionais , Temperatura Alta , Imunidade Ativa/fisiologia , Lactobacillus plantarum , Perciformes/crescimento & desenvolvimento , Perciformes/imunologia , Glycine max
15.
Environ Monit Assess ; 185(9): 7215-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23397539

RESUMO

Japanese stingfish (Sebastiscus marmoratus) and Bambooleaf wrasse (Pseudolabrus japonicas) are monitored annually for mercury pollution in Minamata Bay, Japan. The average total mercury concentration in the muscle of these two species in Minamata Bay was 0.36 mg kg(-1) wet weight and 0.20 kg(-1) wet weigh, respectively, between 2008 and 2010. This is higher than levels elsewhere in Japan (0.125 mg kg(-1) wet weight and 0.038 mg kg(-1) wet weight, respectively). The FDA (2001) and EPA (2004) suggested that a proportion of mercury accumulated in fish is derived from seawater. We reared young red sea bream (Pagrus major) over a 2-year period in Minamata Bay and Nagashima (control) to evaluate the uptake of mercury from seawater and dietary sources. Fish were fed a synthesized diet that did not contain mercury. There was no difference in mercury accumulation in the muscle of red sea bream between Minamata Bay and Nagashima. Thus, our results suggest that the majority of mercury accumulated in fish muscle is not from seawater.


Assuntos
Mercúrio/análise , Dourada/metabolismo , Água do Mar/química , Poluentes Químicos da Água/análise , Animais , Baías/química , Monitoramento Ambiental , Japão , Mercúrio/metabolismo , Músculos/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...