Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882095

RESUMO

Phototropin (phot) is a blue light (BL) receptor and thermosensor that mediates chloroplast movements in plants. Liverworts, as early-diverging plant species, have a single copy of PHOT gene, and the phot protein in each liverwort activates the signaling pathway adapted to its specific growing environment. In this study, we functionally compared phot from two different liverworts species: Apopellia endiviifolia (Aephot) and Marchantia polymorpha (Mpphot). The BL-dependent photochemical activity of Aephot was similar to that of Mpphot, whereas the thermochemical activity of Aephot was lower than that of Mpphot. Therefore, the phot-mediated signaling pathways of the two plant species may differ more in response to temperature than to BL. Furthermore, we analyzed the functional compatibility of Aephot and Mpphot in chloroplast movements by transiently expressing AePHOT or MpPHOT. The transient expression of AePHOT did not mediate chloroplast movement in M. polymorpha, showing the incompatibility of Aephot with the signaling pathway of M. polymorpha. By contrast, the transient expression of MpPHOT mediated chloroplast movement in A. endiviifolia, indicating the compatibility of Mpphot with the signaling pathway of A. endiviifolia. Our findings reveal both functional similarities and differences between Aephot and Mpphot proteins from the closely related liverworts.

2.
Plant Cell Environ ; 46(6): 1822-1832, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36782387

RESUMO

Chloroplasts move to the periclinal walls of cells under weak light to harness light energy for photosynthesis and to anticlinal walls to avoid strong light. These responses involve the cytoskeleton components microtubules and/or actin filaments. In the dark, chloroplasts move to the anticlinal cell walls bordering neighbouring cells (dark-positioning response), but this response in various plants normally requires a prolonged dark incubation period, which has hampered analysis. However, we recently demonstrated the dark-positioning response that can be induced after a short period of dark incubation in the liverwort Apopellia endiviifolia. Here, we investigated whether the cytoskeleton components function in the dark-positioning response of A. endiviifolia cells. Microtubules and actin filaments were fluorescently visualised in A. endiviifolia cells and were disrupted following treatment with the microtubule and actin filament polymerisation inhibitors. The dark-positioning response was unaffected in the cells with disrupted microtubules. By contrast, the dark-positioning response was inhibited by the disruption of actin filaments. The disruption of actin filaments also restricted chloroplast mobility during light- and cold-dependent chloroplast movements in A. endiviifolia. Therefore, the dark-positioning response of A. endiviifolia depends solely on an actin filament-associated motility mechanism, as do the light- and cold-dependent chloroplast responses.


Assuntos
Hepatófitas , Luz , Citoesqueleto de Actina/fisiologia , Microtúbulos , Cloroplastos/fisiologia , Actinas
3.
Physiol Plant ; 173(3): 775-787, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34102708

RESUMO

Changes in the subcellular localisation of chloroplasts help optimise photosynthetic activity under different environmental conditions. In many plants, this movement is mediated by the blue-light photoreceptor phototropin. A model organism with simple phototropin signalling that allows clear observation of chloroplasts would facilitate the study of chloroplast relocation movement. Here, we examined this process in the simple thalloid liverwort Apopellia endiviifolia. Transverse sections of the thallus tissue showed uniformly developed chloroplasts and no air chambers; these characteristics enable clear observation of chloroplasts and analysis of their movements under a fluorescence stereomicroscope. At 22°C, the chloroplasts moved to the anticlinal walls of cells next to the neighbouring cells in the dark (dark-positioning response), whereas they moved towards weak light (accumulation response) and away from strong light (avoidance response). When the temperature was reduced to 5°C, the chloroplasts moved away from weak light (cold-avoidance response). Hence, both light- and temperature-dependent chloroplast relocation movements occur in A. endiviifolia. Notably, the accumulation, avoidance and cold-avoidance responses were induced under blue-light but not under red-light. These results suggest that phototropin is responsible for chloroplast relocation movement in A. endiviifolia and that the characteristics are similar to those in the model liverwort Marchantia polymorpha. RNA sequencing and Southern blot analysis identified a single copy of the PHOTOTROPIN gene in A. endiviifolia, indicating that a simple phototropin signalling pathway functions in A. endiviifolia. We conclude that A. endiviifolia has great potential as a model system for elucidating the mechanisms of chloroplast relocation movement.


Assuntos
Cloroplastos , Marchantia , Luz , Movimento , Fototropinas/genética
4.
Diagn Microbiol Infect Dis ; 70(4): 531-3, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21767710

RESUMO

Phoma species are primarily phytopathogens which have been reported to sporadically cause human disease. We report a patient with phaeohyphomycotic cysts caused by Phoma species, which were initially mistaken for ganglions.


Assuntos
Ascomicetos/isolamento & purificação , Cistos/microbiologia , Cistos/patologia , Micoses/diagnóstico , Micoses/patologia , Idoso , Histocitoquímica , Humanos , Masculino , Microscopia , Micoses/microbiologia , Infecções dos Tecidos Moles/microbiologia , Infecções dos Tecidos Moles/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...