Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 46(8): e678-e705, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31125441

RESUMO

PURPOSE:  Task Group (TG) 224 was established by the American Association of Physicists in Medicine's Science Council under the Radiation Therapy Committee and Work Group on Particle Beams. The group was charged with developing comprehensive quality assurance (QA) guidelines and recommendations for the three commonly employed proton therapy techniques for beam delivery: scattering, uniform scanning, and pencil beam scanning. This report supplements established QA guidelines for therapy machine performance for other widely used modalities, such as photons and electrons (TG 142, TG 40, TG 24, TG 22, TG 179, and Medical Physics Practice Guideline 2a) and shares their aims of ensuring the safe, accurate, and consistent delivery of radiation therapy dose distributions to patients. METHODS:  To provide a basis from which machine-specific QA procedures can be developed, the report first describes the different delivery techniques and highlights the salient components of the related machine hardware. Depending on the particular machine hardware, certain procedures may be more or less important, and each institution should investigate its own situation. RESULTS:  In lieu of such investigations, this report identifies common beam parameters that are typically checked, along with the typical frequencies of those checks (daily, weekly, monthly, or annually). The rationale for choosing these checks and their frequencies is briefly described. Short descriptions of suggested tools and procedures for completing some of the periodic QA checks are also presented. CONCLUSION:  Recommended tolerance limits for each of the recommended QA checks are tabulated, and are based on the literature and on consensus data from the clinical proton experience of the task group members. We hope that this and other reports will serve as a reference for clinical physicists wishing either to establish a proton therapy QA program or to evaluate an existing one.


Assuntos
Terapia com Prótons/instrumentação , Garantia da Qualidade dos Cuidados de Saúde , Humanos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/normas , Radiometria , Cintilografia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Segurança
2.
Phys Med Biol ; 64(13): 135022, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31022708

RESUMO

Biological uncertainty remains one of the main sources of uncertainties in proton therapy, and is encapsulated in a scalar quantity known as relative biological effective (RBE). It is currently recognised that a constant RBE of 1.1 is not consistent with radiobiological experiment and may lead to sub-optimal exploitation of the benefits of proton therapy. To overcome this problem, several RBE models have been developed, and in most of these models, there is a dependence of RBE on dose-averaged linear energy transfer (LET), [Formula: see text]. In this work, we show that the [Formula: see text] estimation in these models during the data-fitting (or parameter estimation) phase could be subjected to a huge uncertainty due to not taking into account cellular materials during simulation, and this uncertainty can propagate down to the resulting RBE models. The dosimetric impact of this [Formula: see text] uncertainty is then evaluated on a simple clinical spread out Bragg peak (SOBP) and a prostate example. Our simulation shows that [Formula: see text] uncertainty due to the use of water as cellular material is non-negligible under low [Formula: see text] and low dose (2 Gy), and can be neglected otherwise. Thus, this study indicates that further dose and range margins may be required for low [Formula: see text] target under low dose. This is due to greater uncertainties in RBE model associated with incomplete knowledge of cellular composition for [Formula: see text] computation.


Assuntos
Transferência Linear de Energia , Modelos Biológicos , Eficiência Biológica Relativa , Humanos , Terapia com Prótons , Radiometria , Incerteza
3.
Med Phys ; 40(2): 021725, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23387748

RESUMO

PURPOSE: To evaluate the transit dose based patient specific quality assurance (QA) of intensity modulated radiation therapy (IMRT) for verification of the accuracy of dose delivered to the patient. METHODS: Five IMRT plans were selected and utilized to irradiate a homogeneous plastic water phantom and an inhomogeneous anthropomorphic phantom. The transit dose distribution was measured with radiochromic film and was compared with the computed dose map on the same plane using a gamma index with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit. RESULTS: While the average gamma index for comparisons of dose distributions was less than one for 98.9% of all pixels from the transit dose with the homogeneous phantom, the passing rate was reduced to 95.0% for the transit dose with the inhomogeneous phantom. Transit doses due to a 5 mm setup error may cause up to a 50% failure rate of the gamma index. CONCLUSIONS: Transit dose based IMRT QA may be superior to the traditional QA method since the former can show whether the inhomogeneity correction algorithm from TPS is accurate. In addition, transit dose based IMRT QA can be used to verify the accuracy of the dose delivered to the patient during treatment by revealing significant increases in the failure rate of the gamma index resulting from errors in patient positioning during treatment.


Assuntos
Doses de Radiação , Radioterapia de Intensidade Modulada/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imagens de Fantasmas , Plásticos , Radiometria , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...