Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634513

RESUMO

BACKGROUND: Striga hermonthica, an obligate root parasitic weed, poses a significant threat to cereal production in sub-Saharan Africa. Lowering Striga seed bank in infested soils is a promising strategy to mitigate infestation levels. The dependency of Striga seed germination on strigolactones opens up the possibility of a 'suicidal germination' approach, where synthetic germination stimulants induce lethal germination in the absence of a host. Implementing this approach requires active germination stimulants with a suitable formulation for field application. Here, we describe the development of slow-releasing granular formulation of two potent germination stimulants 'Methyl Phenlactonoate 3' and 'Nijmegen-1' and the assessment of their activity under Laboratory, greenhouse, mini-field, and field conditions. RESULTS: Under laboratory conditions, the granular formulation of either of the two germination stimulants (1.25 mg per plate, corresponding to 0.09 mg a.i.) induced Striga seed germination at a rate of up to 43%. With 10 mg granular product (0.75 mg a.i.) per pot, we observed 77-83% reduction in Striga emergence under greenhouse pot conditions. Application of the formulated stimulants under artificially or naturally infested fields resulted in approximately 56%, 60%, and 72% reduction in Striga emergence in maize, sorghum, and millet fields in Kenya and Burkina Faso, respectively. CONCLUSION: Our findings on the newly designed granular formulation of Methyl Phenlactonoate 3 and Nijmegen-1 reveal encouraging prospects for addressing the Striga problem in Africa. These findings underscore several significant advantages of the formulated stimulants, including suitability for the African agricultural context, and, most importantly, their effectiveness in reducing Striga infection. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Plants (Basel) ; 11(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35448773

RESUMO

The obligate hemiparasite Striga hermonthica is one of the major global biotic threats to agriculture in sub-Saharan Africa, causing severe yield losses of cereals. The germination of Striga seeds relies on host-released signaling molecules, mainly strigolactones (SLs). This dependency opens up the possibility of deploying SL analogs as "suicidal germination agents" to reduce the accumulated seed bank of Striga in infested soils. Although several synthetic SL analogs have been developed for this purpose, the utility of these compounds in realizing the suicidal germination strategy for combating Striga is still largely unknown. Here, we evaluated the efficacy of three potent SL analogs (MP3, MP16, and Nijmegen-1) under laboratory, greenhouse, and farmer's field conditions. All investigated analogs showed around a 50% Striga germination rate, equivalent to a 50% reduction in infestation, which was comparable to the standard SL analog GR24. Importantly, MP16 had the maximum reduction of Striga emergence (97%) in the greenhouse experiment, while Nijmegen-1 appeared to be a promising candidate under field conditions, with a 43% and 60% reduction of Striga emergence in pearl millet and sorghum fields, respectively. These findings confirm that the selected SL analogs appear to make promising candidates as simple suicidal agents both under laboratory and real African field conditions, which may support us to improve suicidal germination technology to deplete the Striga seed bank in African agriculture.

3.
Plants (Basel) ; 11(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35336692

RESUMO

Striga hermonthica, a member of the Orobanchaceae family, is an obligate root parasite of staple cereal crops, which poses a tremendous threat to food security, contributing to malnutrition and poverty in many African countries. Depleting Striga seed reservoirs from infested soils is one of the crucial approaches to minimize subterranean damage to crops. The dependency of Striga germination on the host-released strigolactones (SLs) has prompted the development of the "Suicidal Germination" strategy to reduce the accumulated seed bank of Striga. The success of aforementioned strategy depends not only on the activity of the applied SL analogs, but also requires suitable application protocol with simple, efficient, and handy formulation for rain-fed African agriculture. Here, we developed a new formulation "Emulsifiable Concentration (EC)" for the two previously field-assessed SL analogs Methyl phenlactonoate 3 (MP3) and Nijmegen-1. The new EC formulation was evaluated for biological activities under lab, greenhouse, mini-field, and field conditions in comparison to the previously used Atlas G-1086 formulation. The EC formulation of SL analogs showed better activities on Striga germination with lower EC50 and high stability under Lab conditions. Moreover, EC formulated SL analogs at 1.0 µM concentrations reduced 89-99% Striga emergence in greenhouse. The two EC formulated SL analogs showed also a considerable reduction in Striga emergence in mini-field and field experiments. In conclusion, we have successfully developed a desired formulation for applying SL analogs as suicidal agents for large-scale field application. The encouraging results presented in this study pave the way for integrating the suicidal germination approach in sustainable Striga management strategies for African agriculture.

4.
Food Energy Secur ; 11(1): e337, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34900239

RESUMO

At the onset of COVID-19, researchers quickly recognized the need for research on the consequences of the pandemic for agricultural and food systems, both in terms of immediate impacts on access to inputs and labor, disruptions in transportation and markets, and the longer-term implications on crop productivity, income, and livelihoods. Vegetable production and supply chains are particularly vulnerable due to the perishable nature of the products and labor-intensive production practices. The purpose of this study was to understand the impacts of COVID-19 on vegetable production in Burkina Faso in terms of both the biophysical aspects such as yields and access to inputs and socioeconomic aspects such as access to labor, markets, and social services. A survey was developed to better understand smallholder farmer experiences regarding the impacts of COVID-19 on their vegetable production systems and social well-being. The survey was administered (between August and October 2020) with smallholder farmers (n = 605) in 13 administrative regions covering all agroecological zones of Burkina Faso. The survey results clearly show impacts of COVID-19 on vegetable systems, including a reduction in access to inputs, a reduction in yields, a loss of income, reduced access to local and urban markets, reduced access to transportation, and an increase in post-harvest loss. Market access, distribution, and disruptions were a major shock to the system. Results also showed an increase in women's labor in the household, and for youth, an increase in unemployment, job loss, and concerns of poverty. Finally, food security and social supports were highlighted as major issues for resilience and livelihoods. The results from this survey should be helpful to policymakers and researchers to develop policies and strategies to minimize the negative impacts of this ongoing pandemic on the agri-food systems and support smallholder farmers to overcome stress caused by COVID-19.

5.
Front Plant Sci ; 10: 353, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001294

RESUMO

Strigolactones (SLs) regulate plant development and induce seed germination in obligate root parasitic weeds, e.g. Striga spp. Because organic synthesis of natural SLs is laborious, there is a large need for easy-to-synthesize and efficient analogs. Here, we investigated the effect of a structural modification of the D-ring, a conserved structural element in SLs. We synthesized and investigated the activity of two analogs, MP13 and MP26, which differ from previously published AR8 and AR36 only in the absence of methylation at C-3'. The de-methylated MP13 and MP26 were much more efficient in regulating plant development and inducing Striga seed germination, compared with AR8. Hydrolysis assays performed with purified Striga SL receptor and docking of AR8 and MP13 to the corresponding active site confirmed and explained the higher activity. Field trials performed in a naturally Striga-infested African farmer's field unraveled MP13 as a promising candidate for combating Striga by inducing germination in host's absence. Our findings demonstrate that methylation of the C-3' in D-ring in SL analogs has a negative impact on their activity and identify MP13 and, particularly, MP26 as potent SL analogs with simple structures, which can be employed to control Striga, a major threat to global food security.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...