Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol Ther (Seoul) ; 32(1): 136-145, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37424516

RESUMO

People with obesity maintain low levels of inflammation; therefore, their exposure to foreign antigens can trigger an excessive immune response. In people with obesity or allergic contact dermatitis (ACD), symptoms are exacerbated by a reduction in the number of regulatory T cells (Tregs) and IL-10/TGF-ß-modified macrophages (M2 macrophages) at the inflammatory site. Benefits of intermittent fasting (IF) have been demonstrated for many diseases; however, the immune responses regulated by macrophages and CD4+T cells in obese ACD animal models are poorly understood. Therefore, we investigated whether IF suppresses inflammatory responses and upregulates the generation of Tregs and M2 macrophages in experimental ACD animal models of obese mice. The IF regimen relieved various ACD symptoms in inflamed and adipose tissues. We showed that the IF regimen upregulates Treg generation in a TGF-ß-dependent manner and induces CD4+T cell hypo-responsiveness. IF-M2 macrophages, which strongly express TGF-ß and inhibit CD4+T cell proliferation, directly regulated Treg differentiation from CD4+T cells. These results indicate that the IF regimen enhances the TGF-ß-producing ability of M2 macrophages and that the development of Tregs keeps mice healthy against ACD exacerbated by obesity. Therefore, the IF regimen may ameliorate inflammatory immune disorders caused by obesity.

2.
Prev Nutr Food Sci ; 28(3): 263-270, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37842245

RESUMO

In this study, immature persimmon (Diospyros kaki Thunb.) ethanol extract was administered to an obese animal model fed a high-fat diet to measure weight change, adipose tissue weight, serum lipid level, and expression level of adipose-related genes to evaluate its efficacy. Administration of D. kaki ethanol extract (DKE) (100 and 500 mg/kg/d) decreased the body weight gain, adipose tissue weight, and serum triglyceride levels in mice fed a high-fat diet. Furthermore, it improved the leptin and adiponectin levels in the blood as well as gene expression in the liver. It also inhibited the expression of sterol regulatory element-binding protein-1c, inhibiting the production of triglyceride biosynthetic enzyme fatty acid synthesis and acetyl-CoA carboxylase, and decreased the expressions of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding proteins that induce adipocyte differentiation. Therefore, these data suggest that DKE exerts beneficial effects on high-fat diet-induced obesity by modulating lipid metabolism in mice fed a high-fat diet.

3.
Nutrients ; 14(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558517

RESUMO

Hair loss remains a significant problem that is difficult to treat; therefore, there is a need to identify safe natural materials that can help patients with hair loss. We evaluated the hair anagen activation effects of limonin, which is abundant in immature citrus fruits. Limonin increased the proliferation of rat dermal papilla cells (rDPC) by changing the levels of cyclin D1 and p27, and increasing the number of BrdU-positive cells. Limonin increased autophagy by decreasing phosphorylated mammalian target of rapamycin levels and increasing the phospho-Raptor, ATG7 and LC3B. Limonin also activated the Wnt/ß-catenin pathway by increasing phospho-ß-catenin levels. XAV939, a Wnt/ß-catenin inhibitor, inhibited these limonin-induced changes, including induced autophagy, BrdU-positive cells, and cell proliferation. Limonin increased the phosphorylated AKT levels in both two-dimensional cultured rDPC and three-dimensional spheroids. Treatment with the PI3K inhibitor wortmannin inhibited limonin-induced proliferation, and disrupted other limonin-mediated changes, including decreased p27, increased BrdU-positive cells, induced autophagy, and increased ATG7 and LC3B levels. Wortmannin also inhibited limonin-induced cyclin D1 and LC3 expression in spheroids. Collectively, these results indicate that limonin can enhance anagen signaling by activating autophagy via targeting the Wnt/ß-catenin and/or PI3K/AKT pathways in rDPC, highlighting a candidate nutrient for hair loss treatment.


Assuntos
Folículo Piloso , Limoninas , Animais , Ratos , Alopecia , beta Catenina/metabolismo , Bromodesoxiuridina/metabolismo , Proliferação de Células , Células Cultivadas , Ciclina D1/metabolismo , Frutas/metabolismo , Limoninas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Via de Sinalização Wnt , Wortmanina/metabolismo , Wortmanina/farmacologia
4.
Molecules ; 27(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35408575

RESUMO

Various studies addressing the increasing problem of hair loss, using natural products with few side effects, have been conducted. 5-bromo-3,4-dihydroxybenzaldehyde (BDB) exhibited anti-inflammatory effects in mouse models of atopic dermatitis and inhibited UVB-induced oxidative stress in keratinocytes. Here, we investigated its stimulating effect and the underlying mechanism of action on hair growth using rat vibrissa follicles and dermal papilla cells (DPCs), required for the regulation of hair cycle and length. BDB increased the length of hair fibers in rat vibrissa follicles and the proliferation of DPCs, along with causing changes in the levels of cell cycle-related proteins. We investigated whether BDB could trigger anagen-activating signaling pathways, such as the Wnt/ß-catenin pathway and autophagy in DPCs. BDB induces activation of the Wnt/ß-catenin pathway through the phosphorylation of GSG3ß and ß-catenin. BDB increased the levels of autophagic vacuoles and autophagy regulatory proteins Atg7, Atg5, Atg16L, and LC3B. We also investigated whether BDB inhibits the TGF-ß pathway, which promotes transition to the catagen phase. BDB inhibited the phosphorylation of Smad2 induced by TGF-ß1. Thus, BDB can promote hair growth by modulating anagen signaling by activating Wnt/ß-catenin and autophagy pathways and inhibiting the TGF-ß pathway in DPCs.


Assuntos
Benzaldeídos , Cabelo , Fator de Crescimento Transformador beta , Via de Sinalização Wnt , Animais , Autofagia , Benzaldeídos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Cabelo/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Ratos , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/metabolismo
5.
Biomol Ther (Seoul) ; 29(2): 211-219, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33518533

RESUMO

Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/ß-catenin proteins, such as GSK3ß (Ser9) and ß-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/ß-catenin pathway, attenuated the MA-induced increase in ß-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/ß-catenin and ERK pathways in DPCs.

6.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604799

RESUMO

The hair follicle goes through repetitive cycles including anagen, catagen, and telogen. The interaction of dermal papilla cells (DPCs) and keratinocytes regulates the hair cycle and hair growth. Humanin was discovered in the surviving brain cells of patients with Alzheimer's disease. HNG, a humanin analogue, activates cell growth, proliferation, and cell cycle progression, and it protects cells from apoptosis. This study was performed to investigate the promoting effect and action mechanisms of HNG on hair growth. HNG significantly increased DPC proliferation. HNG significantly increased hair shaft elongation in vibrissa hair follicle organ culture. In vivo experiment showed that HNG prolonged anagen duration and inhibited hair follicle cell apoptosis, indicating that HNG inhibited the transition from the anagen to catagen phase mice. Furthermore, HNG activated extracellular signal-regulated kinase (Erk)1/2, Akt, and signal transducer and activator of transcription (Stat3) within minutes and up-regulated vascular endothelial growth factor (VEGF) levels on DPCs. This means that HNG could induce the anagen phase longer by up-regulating VEGF, which is a Stat3 target gene and one of the anagen maintenance factors. HNG stimulated the anagen phase longer with VEGF up-regulation, and it prevented apoptosis by activating Erk1/2, Akt, and Stat3 signaling.


Assuntos
Derme/crescimento & desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Cabelo/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Animais , Apoptose , Ciclo Celular , Proliferação de Células , Células Cultivadas , Derme/efeitos dos fármacos , Derme/metabolismo , Feminino , Cabelo/efeitos dos fármacos , Cabelo/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Fenômenos Fisiológicos da Pele
7.
Biomol Ther (Seoul) ; 28(4): 354-360, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32394669

RESUMO

The hair cycle (anagen, catagen, and telogen) is regulated by the interaction between mesenchymal cells and epithelial cells in the hair follicles. The proliferation of dermal papilla cells (DPCs), mesenchymal-derived fibroblasts, has emerged as a target for the regulation of the hair cycle. Here, we show that vanillic acid, a phenolic acid from wheat bran, promotes the proliferation of DPCs via a PI3K/Akt/Wnt/ß-catenin dependent mechanism. Vanillic acid promoted the proliferation of DPCs, accompanied by increased levels of cell-cycle proteins cyclin D1, CDK6, and Cdc2 p34. Vanillic acid also increased the levels of phospho(ser473)- Akt, phospho(ser780)-pRB, and phospho(thr37/46)-4EBP1 in a time-dependent manner. Wortmannin, an inhibitor of the PI3K/ Akt pathway, attenuated the vanillic acid-mediated proliferation of DPCs. Vanillic acid-induced progression of the cell-cycle was also suppressed by wortmannin. Moreover, vanillic acid increased the levels of Wnt/ß-catenin proteins, such as phospho(ser9)- glycogen synthase kinase-3ß, phospho(ser552)-ß-catenin, and phospho(ser675)-ß-catenin. We found that vanillic acid increased the levels of cyclin D1 and Cox-2, which are target genes of ß-catenin, and these changes were inhibited by wortmannin. To investigate whether vanillic acid affects the downregulation of ß-catenin by dihydrotestosterone (DHT), implicated in the development of androgenetic alopecia, DPCs were stimulated with DHT in the presence and absence of vanillic acid for 24 h. Western blotting and confocal microscopy analyses showed that the decreased level of ß-catenin after the incubation with DHT was reversed by vanillic acid. These results suggest that vanillic acid could stimulate anagen and alleviate hair loss by activating the PI3K/Akt and Wnt/ß-catenin pathways in DPCs.

8.
Nutrients ; 12(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397306

RESUMO

Anticancer effects of L-ascorbic acid (Vitamin C, L-AA) have been reported in various types of cancers. L-AA intake reduces breast cancer recurrence and mortality; however, the role of L-AA in the treatment of breast cancer remains poorly understood. In this study, we investigated the effect and mechanism action of L-AA on breast cancer growth. L-AA inhibited the growth of breast cancer cells by inducing apoptotic cell death at the evaluated treatment concentrations without affecting normal cells. Moreover, L-AA induces autophagosome formation via regulation of mammalian target of rapamycin (mTOR), Beclin1, and autophagy-related genes (ATGs) and increased autophagic flux. Notably, we observed that L-AA increased p62/SQSTM1 (sequestosome 1) protein levels. Accumulation of p62 protein in cancer cells in response to stress has been reported, but its role in cancer regulation remains controversial. Here, we demonstrated that L-AA-induced p62 accumulation is related to L-AA-induced breast cancer growth inhibition. Furthermore, L-AA induced endoplasmic reticulum (ER) stress via the IRE-JNK-CHOP (inositol-requiring endonuclease-c-Jun N-terminal kinase-C/EBP homologous protein) signaling pathways, which increased the nuclear levels of p62/SQSTM1. These findings provide evidence that L-AA-induced ER stress could be crucial for p62 accumulation-dependent cell death, and L-AA can be useful in breast cancer treatment.


Assuntos
Ácido Ascórbico/farmacologia , Neoplasias da Mama/genética , Núcleo Celular/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Endorribonucleases/metabolismo , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Fator de Transcrição CHOP/metabolismo
9.
Toxicol Res ; 35(3): 279-285, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31341557

RESUMO

In this study, we investigated the therapeutic potential of Cinnamomum camphora leaves on allergic skin inflammation such as atopic dermatitis. We evaluated the effects of C. camphora leaves on human adult low-calcium high-temperature keratinocytes and atopic dermatitis mice. C. camphora leaves inhibited Macrophage-derived chemokine (an inflammatory chemokine) production in interferon-γ (10 ng/mL) stimulated Human adult low-calcium high-temperature keratinocytes in a dose dependent manner. C. camphora leaves suppressed the phosphorylation of janus kinase signal transducer and activator of transcription 1. C. camphora leaves also suppressed the phosphorylation of extracellular signal-regulated kinase 1/2, a central signaling molecule in the inflammation process. These results suggest that C. camphora leaves exhibits anti-inflammatory effect via the phosphorylation of signal transducer and activator of transcription 1 and extracellular signal-regulated kinase 1/2. To study the advanced effects of C. camphora leaves on atopic dermatitis, we induced experimental atopic dermatitis in mice by applying 2,4-dinitrochlorobenzene. The group treated with C. camphora leaves (100 mg/kg) showed remarkable improvement of atopic dermatitis symptoms: reduced serum immunoglobulin E levels, smaller lymph nodes with reduced thickness and length, decreased ear edema, and reduced levels of inflammatory cell infiltration in the ears. Interestingly, the effects of C. camphora leaves on atopic dermatitis symptoms were stronger than those of hydrocort cream, a positive control. Taken together, C. camphora leaves showed alleviating effects on the inflammatory chemokine production in vitro and atopic dermatitis symptoms in vivo. These results suggest that C. camphora leaves help in the treatment of allergic inflammation such as atopic dermatitis.

10.
Biol Pharm Bull ; 42(1): 139-143, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30606985

RESUMO

Norgalanthamine has been shown to possess hair-growth promoting effects, including increase in hair-fiber length in cultured rat vibrissa follicles and increase in dermal papilla cell (DPC) proliferation. However, the intracellular mechanisms that underlie the action of norgalanthamine in DPCs have not been investigated. In this study, we addressed the ability of norgalanthamine to trigger anagen-activating signaling pathways in DPCs. Norgalanthamine significantly increased extracellular signal-regulated kinase (ERK) 1/2 phosphorylation at 0.1 µM, a concentration at which DPC proliferation was also induced. Furthermore, the increases in norgalanthamine-induced ERK 1/2 activation and subsequent DPC proliferation were suppressed by the mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, U0126. A 0.1 µM dose of norgalanthamine also increased phosphorylation of AKT, which was followed by an increase in glycogen synthase kinase 3ß phosphorylation and nuclear translocation of ß-catenin. In addition, LY294002, a phosphatidylinositol 3 kinase (PI3K) inhibitor, blocked the effect of norgalanthamine on DPC proliferation. These results suggest that norgalanthamine can stimulate the anagen phase of the hair cycle in DPCs via activation of the ERK 1/2, PI3K/AKT, and Wnt/ß-catenin pathways.


Assuntos
Derme/efeitos dos fármacos , Derme/crescimento & desenvolvimento , Galantamina/análogos & derivados , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Galantamina/farmacologia , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Ratos , Transdução de Sinais/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia
11.
Int J Mol Sci ; 19(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223485

RESUMO

Hair growth is regulated by the interaction between dermal papilla cells (DPC) and other cells inside the hair follicle. Here, we show the effect and action mechanism of mackerel-derived fermented fish oil (FFO) extract and its component docosahexaenoic acid (DHA) in the control of hair growth. The hair growth effect of FFO extract was evaluated by the culture method of vibrissa follicles and in vivo dotmatrix planimetry method. FFO extract increased the length of hair-fibers and enabled stimulated initiation into the anagen phase of the hair cycle. As expected, FFO extract significantly increased DPC proliferation. FFO extract induced the progression of the cell cycle and the activation of extracellular signal-regulated kinase (ERK), p38 and Akt. FFO extract induced nuclear translocation of ß-catenin, a stimulator of anagen phase, through an increase of phospho-glycogen synthase kinase3ß (GSK3ß) level. Since various prostaglandins are known to promote hair growth in humans and mice, we examined the effect of DHA, a main omega-3 fatty acid of FFO, on DPC proliferation. DHA not only increased DPC proliferation but also upregulated levels of cell cycle-associated proteins such as cyclin D1 and cdc2 p34. These results show that FFO extract and DHA promote hair growth through the anagen-activating pathways in DPC.


Assuntos
Alimentos Fermentados , Óleos de Peixe/farmacologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Cabelo/crescimento & desenvolvimento , Perciformes , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Alimentos Fermentados/análise , Óleos de Peixe/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Via de Sinalização Wnt
12.
Oncotarget ; 9(28): 19911-19928, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29731993

RESUMO

Here, we investigated whether over-activation of AKT pathway is important in the resistance to 5-fluorouracil (5-FU) in SNU-C5/5-FU cells, 5-FU-resistant human colon cancer cells. When compared to wild type SNU-C5 cells (WT), SNU-C5/5-FU cells showed over-activation of PI3K/AKT pathway, like increased phosphorylation of AKT, mTOR, and GSK-3ß, nuclear localization of ß-catenin, and decreased E-cadherin. Moreover, E-cadherin level was down-regulated in recurrent colon cancer tissues compared to primary colon cancer tissues. Gene silencing of AKT1 or treatment of LY294002 (PI3 kinase inhibitor) increased E-cadherin, whereas decreased phospho-GSK-3ß. LY294002 also reduced protein level of ß-catenin with no influence on mRNA level. PTEN level was higher in SNU-C5/WT than SNU-C5/5-FU cells, whereas the loss of PETN in SNU-C5/WT cells induced characteristics of SNU-C5/5-FU cells. In SNU-C5/5-FU cells, NF-κB signaling was activated, along with the overexpression of COX-2 and stabilization of survivin. However, increased COX-2 contributed to the stabilization of survivin, which directly interacts with cytoplasmic procaspase-3, while the inhibition of AKT reduced this cascade. We finally confirmed that combination treatment with 5-FU and LY294002 or Vioxx could induce apoptosis in SNU-C5/5-FU cells. These data suggest that inhibition of AKT activation may overcome 5-FU-resistance in SNU-C5/5-FU cells. These findings provide evidence that over-activation of AKT is crucial for the acquisition of resistance to anticancer drugs and AKT pathway could be a therapeutic target for cancer treatment.

14.
Toxicol Res ; 33(4): 325-332, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29071017

RESUMO

3-Bromo-4,5-dihydroxybenzaldehyde (BDB) is a natural bromophenol compound that is most commonly isolated from red algae. The present study was designed to investigate the anti-inflammatory properties of BDB on atopic dermatitis (AD) in mice induced by 2,4-dinitrochlorobenzene (DNCB) and on lipopolysaccharide (LPS)-stimulated murine macrophages. BDB treatment (100 mg/kg) resulted in suppression of the development of AD symptoms compared with the control treatment (induction-only), as demonstrated by reduced immunoglobulin E levels in serum, smaller lymph nodes with reduced thickness and length, a decrease in ear edema, and reduced levels of inflammatory cell infiltration in the ears. In RAW 264.7 murine macrophages, BDB (12.5, 25, 50, and 100 µM) suppressed the production of interleukin-6, a proinflammatory cytokine, in a dose-dependent manner. BDB also had an inhibitory effect on the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 1 (STAT1; Tyr 701), two major signaling molecules involved in cellular inflammation. Taken together, the results show that BDB treatment alleviates inflammatory responses in an atopic dermatitis mouse model and RAW 264.7 macrophages. These results suggest that BDB may be a useful therapeutic strategy for treating conditions involving allergic inflammation such as atopic dermatitis.

15.
Mar Drugs ; 15(5)2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28475144

RESUMO

In this study, we investigated the effect and mechanism of Undariopsis peterseniana, an edible brown alga, on hair growth. The treatment of vibrissa follicles with U. peterseniana extract ex vivo for 21 days significantly increased the hair-fiber lengths. The U. peterseniana extract also significantly accelerated anagen initiation in vivo. Moreover, we found that U. peterseniana extract was able to open the KATP channel, which may contribute to increased hair growth. The U. peterseniana extract decreased 5α-reductase activity and markedly increased the proliferation of dermal papilla cells, a central regulator of the hair cycle. The U. peterseniana extract increased the levels of cell cycle proteins, such as Cyclin D1, phospho(ser780)-pRB, Cyclin E, phospho-CDK2, and CDK2. The U. peterseniana extract also increased the phosphorylation of ERK and the levels of Wnt/ß-catenin signaling proteins such as glycogen synthase kinase-3ß (GSK-3ß) and ß-catenin. These results suggested that the U. peterseniana extract had the potential to influence hair growth by dermal papilla cells proliferation through the activation of the Wnt/ß-catenin and ERK pathways. We isolated a principal of the U. peterseniana extract, which was subsequently identified as apo-9'-fucoxanthinone, a trichogenic compound. The results suggested that U. peterseniana extract may have a pivotal role in the treatment of alopecia.


Assuntos
Proliferação de Células/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Cabelo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Phaeophyceae/química , Terpenos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Produtos Biológicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Feminino , Cabelo/metabolismo , Folículo Piloso/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Ratos , Ratos Sprague-Dawley , Ratos Wistar
16.
Biomol Ther (Seoul) ; 25(4): 417-426, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28190316

RESUMO

4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-ß (TGF-ß) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-ß signal pathway has not yet been elucidated. We thus examined the effect of 4-O-methylhonokiol on TGF-ß-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4-O-methylhonokiol, TGF-ß1-induced G1/G0 phase arrest and TGF-ß1-induced p21 expression were decreased. Moreover, 4-O-methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF-ß1-induced canonical pathway. We observed that ERK phosphorylation by TGF-ß1 was significantly attenuated by treatment with 4-O-methylhonokiol. 4-O-methylhonokiol inhibited TGF-ß1-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF-ß1-induced noncanonical pathway. These results indicate that 4-O-methylhonokiol could inhibit TGF-ß1-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4-O-methylhonokiol might have protective action on TGF-ß1-induced cell cycle arrest.

17.
Food Sci Biotechnol ; 26(2): 507-511, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30263572

RESUMO

Ishige sinicola (I. sinicola) is an edible brown alga native to South Korea. In the present study, we screened the anti-inflammatory activity of monoolein isolated from I. sinicola. Monoolein pretreatment in lipopolysaccharide (LPS)-stimulated primary murine bone marrow-derived dendritic cells (BMDCs) showed strong dose-dependent inhibition of interleukin (IL)-12 p40, IL-6, and TNF-α cytokine production with IC50 values of 1.69±0.02, 6.87±0.37, and 5.19±0.56 µM, respectively. Pretreatment of monoolein attenuated the activation of MAPK and NF-κB pathways in the LPS-stimulated BMDCs by inhibiting the phosphorylation of p38, ERK1/2, JNK1/2, and IκBα. Furthermore, monoolein inhibited the production of NO and iNOS in RAW264.7 cells. Overall, our findings indicate that monoolein has a significant anti-inflammatory activity, and further studies regarding the potential of monoolein for medicinal use is warranted.

18.
Pharm Biol ; 55(1): 435-440, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27937044

RESUMO

CONTEXT: Seaweeds are rich in bioactive compounds in the form of vitamins, phycobilins, polyphenols, carotenoids, phycocyanins and polysaccharides; many of these are known to have advantageous applications in human health. 3-Hydroxy-4,7-megastigmadien-9-one (comp) was isolated from Ulva pertusa (U. pertusa) Kjellman (Ulvaceae), which is a familiar edible green seaweed. OBJECTIVE: This study evaluates the anti-inflammatory activity of comp in CpG DNA-stimulated bone marrow-derived dendritic cells (BMDCs). MATERIALS AND METHODS: For evaluating the effect of comp on cytokines production, BMDCs were treated with doses of comp (0, 0.5, 1, 2, 5, 10, 25 and 50 µM) for 1 h before stimulation with CpG DNA (1 µM). Cytokine production was measured by ELISA. Western blotting was conducted for evaluating effect of comp (50 µM) on MAPKs and NF-κB pathways. Luciferase reporter gene assay was conducted for effect of comp (0, 5, 10 and 25 µM) on transcriptional activity of AP-1 and NF-κB. RESULTS: Comp exhibited strong inhibition of interleukin (IL)-12 p40, IL-6 and TNF-α cytokine production with IC50 values of 6.02 ± 0.35, 27.14 ± 0.73, and 7.56 ± 0.21 µM, respectively. It blocked MAPKs and NF-κB pathways by inhibiting the phosphorylation of ERK1/2, JNK1/2, p38 and IκBα. In addition, it strongly inhibited the transcriptional activity of AP-1 and NF-κB with IC50 values of 8.74 ± 0.31 and 12.08 ± 0.24 µM, respectively. DISCUSSION AND CONCLUSION: Taken together, these data suggest that comp has a significant anti-inflammatory property and warrants further studies concerning the potential of comp for medicinal use.


Assuntos
Anti-Inflamatórios/farmacologia , Células Dendríticas/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Norisoprenoides/farmacologia , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor Toll-Like 9/antagonistas & inibidores , Ulva/química , Animais , Anti-Inflamatórios/isolamento & purificação , Ilhas de CpG , Citocinas/metabolismo , Células Dendríticas/enzimologia , Relação Dose-Resposta a Droga , Ativação Enzimática , Feminino , Genes Reporter , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Norisoprenoides/isolamento & purificação , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Fosforilação , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Fatores de Tempo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transfecção
19.
Biol Pharm Bull ; 39(8): 1273-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27476937

RESUMO

This study was conducted to evaluate the effects of Sargassum muticum extract and apo-9'-fucoxanthinone, a principal component of S. muticum, on hair growth. When rat vibrissa follicles were treated with S. muticum extract for 21 d, the hair-fiber lengths for the vibrissa follicles increased significantly. Treatment with the S. muticum extract and the EtOAc fraction of the S. muticum extract markedly increased the proliferation of dermal papilla cells (DPCs) and decreased the 5α-reductase activity. In addition, the EtOAc fraction of the S. muticum extract significantly promoted anagen initiation in C57BL/6 mice. Especially, apo-9'-fucoxanthinone, an active constituent from the S. muticum extract, caused an increase in DPC proliferation and a decrease in 5α-reductase activity. To elucidate the molecular mechanisms of apo-9'-fucoxanthinone on the proliferation of DPCs, we examined the level of various signaling proteins. Apo-9'-fucoxanthinone increased the level of vascular endothelial growth factor receptor-2 (VEGF-R2), Wnt/ß-catenin signaling proteins such as phospho(ser9)-glycogen synthase kinase-3ß (GSK-3ß) and phospho(ser552)-ß-catenin, whereas apo-9'-fucoxanthinone did not affect the transforming growth factor-ß (TGF-ß) signaling proteins such as Smad2/3. These results suggest that apo-9'-fucoxanthinone from S. muticum could have the potential for hair growth with DPC proliferation via the activation of Wnt/ß-catenin signaling and the VEGF-R2 pathway.


Assuntos
Inibidores de 5-alfa Redutase/farmacologia , Cabelo/efeitos dos fármacos , Sargassum , Terpenos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Colestenona 5 alfa-Redutase/metabolismo , Misturas Complexas/farmacologia , Feminino , Cabelo/citologia , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Próstata/efeitos dos fármacos , Próstata/enzimologia , Ratos Sprague-Dawley , Ratos Wistar , Fator de Crescimento Transformador beta/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
20.
Biomol Ther (Seoul) ; 24(6): 623-629, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27469141

RESUMO

(1S,2S,3E,7E,11E)-3,7,11,15-cembratetraen-17,2-olide (LS-1), a marine cembrenolide diterpene, has anticancer activity against colon cancer cells such as HT-29, SNU-C5/5-FU (fluorouracil-resistant SNU-C5) and SNU-C5. However, the action mechanism of LS-1 on SNU-C5 human colon cancer cells has not been fully elucidated. In this study, we investigated whether the anticancer effect of LS-1could result from apoptosis via the modulation of Wnt/ß-catenin and the TGF-ß pathways. When treated with the LS-1, we could observe the apoptotic characteristics such as apoptotic bodies and the increase of sub-G1 hypodiploid cell population, increase of Bax level, decrease of Bcl-2 expression, cleavage of procaspase-3 and cleavage of poly (ADP-ribose) polymerase in SNU-C5 cells. Furthermore, the apoptosis induction of SNU-C5 cells upon LS-1 treatment was also accompanied by the down-regulation of Wnt/ß-catenin signaling pathway via the decrease of GSK-3ß phosphorylation followed by the decrease of ß-catenin level. In addition, the LS-1 induced the activation of TGF-ß signaling pathway with the decrease of carcinoembryonic antigen which leads to decrease of c-Myc, an oncoprotein. These data suggest that the LS-1 could induce the apoptosis via the down-regulation of Wnt/ß-catenin pathway and the activation of TGF-ß pathway in SNU-C5 human colon cancer cells. The results support that the LS-1 might have potential for the treatment of human colon cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...