Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Mhealth Uhealth ; 6(8): e10527, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093371

RESUMO

BACKGROUND: Although designed as a consumer product to help motivate individuals to be physically active, Fitbit activity trackers are becoming increasingly popular as measurement tools in physical activity and health promotion research and are also commonly used to inform health care decisions. OBJECTIVE: The objective of this review was to systematically evaluate and report measurement accuracy for Fitbit activity trackers in controlled and free-living settings. METHODS: We conducted electronic searches using PubMed, EMBASE, CINAHL, and SPORTDiscus databases with a supplementary Google Scholar search. We considered original research published in English comparing Fitbit versus a reference- or research-standard criterion in healthy adults and those living with any health condition or disability. We assessed risk of bias using a modification of the Consensus-Based Standards for the Selection of Health Status Measurement Instruments. We explored measurement accuracy for steps, energy expenditure, sleep, time in activity, and distance using group percentage differences as the common rubric for error comparisons. We conducted descriptive analyses for frequency of accuracy comparisons within a ±3% error in controlled and ±10% error in free-living settings and assessed for potential bias of over- or underestimation. We secondarily explored how variations in body placement, ambulation speed, or type of activity influenced accuracy. RESULTS: We included 67 studies. Consistent evidence indicated that Fitbit devices were likely to meet acceptable accuracy for step count approximately half the time, with a tendency to underestimate steps in controlled testing and overestimate steps in free-living settings. Findings also suggested a greater tendency to provide accurate measures for steps during normal or self-paced walking with torso placement, during jogging with wrist placement, and during slow or very slow walking with ankle placement in adults with no mobility limitations. Consistent evidence indicated that Fitbit devices were unlikely to provide accurate measures for energy expenditure in any testing condition. Evidence from a few studies also suggested that, compared with research-grade accelerometers, Fitbit devices may provide similar measures for time in bed and time sleeping, while likely markedly overestimating time spent in higher-intensity activities and underestimating distance during faster-paced ambulation. However, further accuracy studies are warranted. Our point estimations for mean or median percentage error gave equal weighting to all accuracy comparisons, possibly misrepresenting the true point estimate for measurement bias for some of the testing conditions we examined. CONCLUSIONS: Other than for measures of steps in adults with no limitations in mobility, discretion should be used when considering the use of Fitbit devices as an outcome measurement tool in research or to inform health care decisions, as there are seemingly a limited number of situations where the device is likely to provide accurate measurement.

2.
Artigo em Inglês | MEDLINE | ID: mdl-27965808

RESUMO

BACKGROUND: Physical activity (PA) reduces pain and improves functioning in people with knee osteoarthritis (OA), but few people with the condition meet recommended PA guidelines. Successful intervention strategies to increase PA include goal setting, action planning, self-monitoring, and follow-up feedback from a healthcare professional. Recently developed consumer wearable activity trackers allow users to set activity goals, self-monitor daily goal-progress, and provide feedback on goal attainment. It is hypothesized that a multi-component physiotherapist-led intervention that includes a short (40-min) education module, guided goal-setting and action planning, the use of a wristband activity tracker, and weekly follow-up phone calls will lead to increased PA outcomes. METHODS/DESIGN: Thirty-six participants will be recruited from the community for a two-group pilot randomized controlled trial with a stepped-wedge design using an intention-to-treat analysis. Computer-generated block randomization will be performed using varying block sizes and a 1:1 allocation ratio. The 4-week intervention will be delivered immediately (immediate-intervention group) or after a 5-week delay (delayed-intervention group). Outcome measures of pain and disability (Knee Injury and OA Outcome Score), disease self-management ability (Partners in Health Scale), and objective bouted moderate-to-vigorous PA and sedentary time (BodyMedia SenseWear Mini Armband) will be collected at baseline (week 0) and two follow-ups (weeks 5 and 10), for a total study duration of 11 weeks. Feasibility data relating to process, resource, management, and scientific elements of the trial will be collected. Outcome measure and feasibility data will be summarized, and an estimate of intervention efficacy will be obtained by regression model with planned comparisons. The trial began recruiting in February 2015. To date, 34 subjects have been recruited. DISCUSSION: This study will evaluate the feasibility and preliminary efficacy of a novel intervention to promote PA in people living with knee OA. The results will provide valuable information to inform a larger randomized trial to assess intervention effectiveness. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02313506 (registration date 8 December 2014). First participant randomized 20 February 2015.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...