Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
IEEE Trans Image Process ; 33: 2823-2834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598375

RESUMO

Single image super-resolution (SISR) aims to reconstruct a high-resolution image from its low-resolution observation. Recent deep learning-based SISR models show high performance at the expense of increased computational costs, limiting their use in resource-constrained environments. As a promising solution for computationally efficient network design, network quantization has been extensively studied. However, existing quantization methods developed for SISR have yet to effectively exploit image self-similarity, which is a new direction for exploration in this study. We introduce a novel method called reference-based quantization for image super-resolution (RefQSR) that applies high-bit quantization to several representative patches and uses them as references for low-bit quantization of the rest of the patches in an image. To this end, we design dedicated patch clustering and reference-based quantization modules and integrate them into existing SISR network quantization methods. The experimental results demonstrate the effectiveness of RefQSR on various SISR networks and quantization methods.

2.
Nano Lett ; 24(14): 4233-4240, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557069

RESUMO

This study represents the synthesis of a novel class of nanoparticles denoted as annular Au nanotrenches (AANTs). AANTs are engineered to possess embedded, narrow circular nanogaps with dimensions of approximately 1 nm, facilitating near-field focusing for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via a surface-enhanced Raman scattering (SERS)-based immunoassay. Notably, AANTs exhibited an exceedingly low limit of detection (LOD) of 1 fg/mL for SARS-CoV-2 spike glycoproteins, surpassing the commercially available enzyme-linked immunosorbent assay (ELISA) by 6 orders of magnitude (1 ng/mL from ELISA). To assess the real-world applicability, a study was conducted on 50 clinical samples using an SERS-based immunoassay with AANTs. The results revealed a sensitivity of 96% and a selectivity of 100%, demonstrating the significantly enhanced sensing capabilities of the proposed approach in comparison to ELISA and commercial lateral flow assay kits.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , Ouro , COVID-19/diagnóstico , Imunoensaio/métodos , Análise Espectral Raman/métodos
3.
Int Emerg Nurs ; 74: 101424, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531213

RESUMO

BACKGROUND: Emergency departments (ED) nurses experience high mental workloads because of unpredictable work environments; however, research evaluating ED nursing workload using a tool incorporating nurses' perception is lacking. Quantify ED nursing subjective workload and explore the impact of work experience on perceived workload. METHODS: Thirty-two ED nurses at a tertiary academic hospital in the Republic of Korea were surveyed to assess their subjective workload for ED procedures using the National Aeronautics and Space Administration Task Load Index (NASA-TLX). Nonparametric statistical analysis was performed to describe the data, and linear regression analysis was conducted to estimate the impact of work experience on perceived workload. RESULTS: Cardiopulmonary resuscitation (CPR) had the highest median workload, followed by interruption from a patient and their family members. Although inexperienced nurses perceived the 'special care' procedures (CPR and defibrillation) as more challenging compared with other categories, analysis revealed that nurses with more than 107 months of experience reported a significantly higher workload than those with less than 36 months of experience. CONCLUSION: Addressing interruptions and customizing training can alleviate ED nursing workload. Quantified perceived workload is useful for identifying acceptable thresholds to maintain optimal workload, which ultimately contributes to predicting nursing staffing needs and ED crowding.

4.
Virus Res ; 342: 199325, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38309472

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 becomes a serious threat to global health and requires the development of effective antiviral therapies. Current therapies that target viral proteins have limited efficacy with side effects. In this study, we investigated the antiviral activity of MIT-001, a small molecule reactive oxygen species (ROS) scavenger targeting mitochondria, against SARS-CoV-2 and other zoonotic viruses in vitro. The antiviral activity of MIT-001 was quantified by RT-qPCR and plaque assay. We also evaluated the functional analysis of MIT-001 by JC-1 staining to measure mitochondrial depolarization, total RNA sequencing to investigate gene expression changes, and immunoblot to quantify protein expression levels. The results showed that MIT-001 effectively inhibited the replication of B.1.617.2 and BA.1 strains, Zika virus, Seoul virus, and Vaccinia virus. Treatment with MIT-001 restored the expression of heme oxygenase-1 (HMOX1) and NAD(P)H: quinone oxidoreductase 1 (NqO1) genes, anti-oxidant enzymes reduced by SARS-CoV-2, to normal levels. The presence of MIT-001 also alleviated mitochondrial depolarization caused by SARS-CoV-2 infection. These findings highlight the potential of MIT-001 as a broad-spectrum antiviral compound that targets for zoonotic RNA and DNA viruses, providing a promising therapeutic approach to combat viral infection.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Humanos , Animais , SARS-CoV-2 , Espécies Reativas de Oxigênio , Pandemias , Peixes , Antivirais/farmacologia
5.
J Clin Med ; 12(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37835046

RESUMO

We investigated the prognostic performance of scoring systems by the intensive care unit (ICU) type. This was a retrospective observational study using data from the Marketplace for Medical Information in the Intensive Care IV database. The primary outcome was in-hospital mortality. We obtained Sequential Organ Failure Assessment (SOFA), Acute Physiology and Chronic Health Evaluation (APACHE) III, and Simplified Acute Physiology Score (SAPS) II scores in each ICU type. Prognostic performance was evaluated with the area under the receiver operating characteristic curve (AUROC) and was compared among ICU types. A total of 29,618 patients were analyzed, and the in-hospital mortality was 12.4%. The overall prognostic performance of APACHE III was significantly higher than those of SOFA and SAPS II (0.807, [95% confidence interval, 0.799-0.814], 0.785 [0.773-0.797], and 0.795 [0.787-0.811], respectively). The prognostic performance of SOFA, APACHE III, and SAPS II scores was significantly different between ICU types. The AUROC ranges of SOFA, APACHE III, and SAPS II were 0.723-0.826, 0.728-0.860, and 0.759-0.819, respectively. The neurosurgical and surgical ICUs had lower prognostic performance than other ICU types. The prognostic performance of scoring systems in patients with suspected infection is significantly different according to ICU type. APACHE III systems have the highest prediction performance. ICU type may be a significant factor in the prognostication.

6.
Heliyon ; 9(9): e19417, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662772

RESUMO

The waste-heat-recovery boiler with water injection (HR-B/W) applies the heat exchange between the intake air and exhaust gas with the water injection into the intake air. Previous theoretical studies have discussed that the HR-B/W would increase the thermal efficiency of the boiler by the active heat exchange between the intake air and exhaust gas. It has also been discussed that the increased fraction of water vapor in the air would reduce the flame temperature which in turn decreases the NOx emission. However, the potential performance of the HR-B/W has not been validated through practical boiler tests by considering the evaporation characteristics of the injected water, which plays a critical role in the performance of the HR-B/W. In this study the effects of water injection into the intake air on the thermal efficiency and pollutant emissions of the waste-heat-recovery boiler are investigated using a commercial 24 kW condensing boiler in full load condition. Thermodynamic analysis is performed to evaluate the adequate amount of water injection and trace the physical properties in the boiler upon the water injection amount and evaporation characteristics. The boiler test results showed water injection can increase thermal efficiency to 4.4% point and reduce NOx and CO emissions by 69% and 33% respectively compared to those without water injection. These advantages can be further enhanced if the atomization and evaporation performance of injected water is improved.

7.
Nanomaterials (Basel) ; 13(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242096

RESUMO

Gene therapy is an innovative approach in the field of regenerative medicine. This therapy entails the transfer of genetic material into a patient's cells to treat diseases. In particular, gene therapy for neurological diseases has recently achieved significant progress, with numerous studies investigating the use of adeno-associated viruses for the targeted delivery of therapeutic genetic fragments. This approach has potential applications for treating incurable diseases, including paralysis and motor impairment caused by spinal cord injury and Parkinson's disease, and it is characterized by dopaminergic neuron degeneration. Recently, several studies have explored the potential of direct lineage reprogramming (DLR) for treating incurable diseases, and highlighted the advantages of DLR over conventional stem cell therapy. However, application of DLR technology in clinical practice is hindered by its low efficiency compared with cell therapy using stem cell differentiation. To overcome this limitation, researchers have explored various strategies such as the efficiency of DLR. In this study, we focused on innovative strategies, including the use of a nanoporous particle-based gene delivery system to improve the reprogramming efficiency of DLR-induced neurons. We believe that discussing these approaches can facilitate the development of more effective gene therapies for neurological disorders.

8.
Healthc Inform Res ; 29(1): 64-74, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36792102

RESUMO

OBJECTIVES: Although medical artificial intelligence (AI) systems that assist healthcare professionals in critical care settings are expected to improve healthcare, skepticism exists regarding whether their potential has been fully actualized. Therefore, we aimed to conduct a qualitative study with physicians and nurses to understand their needs, expectations, and concerns regarding medical AI; explore their expected responses to recommendations by medical AI that contradicted their judgments; and derive strategies to implement medical AI in practice successfully. METHODS: Semi-structured interviews were conducted with 15 healthcare professionals working in the emergency room and intensive care unit in a tertiary teaching hospital in Seoul. The data were interpreted using summative content analysis. In total, 26 medical AI topics were extracted from the interviews. Eight were related to treatment recommendation, seven were related to diagnosis prediction, and seven were related to process improvement. RESULTS: While the participants expressed expectations that medical AI could enhance their patients' outcomes, increase work efficiency, and reduce hospital operating costs, they also mentioned concerns regarding distortions in the workflow, deskilling, alert fatigue, and unsophisticated algorithms. If medical AI decisions contradicted their judgment, most participants would consult other medical staff and thereafter reconsider their initial judgment. CONCLUSIONS: Healthcare professionals wanted to use medical AI in practice and emphasized that artificial intelligence systems should be trustworthy from the standpoint of healthcare professionals. They also highlighted the importance of alert fatigue management and the integration of AI systems into the workflow.

9.
Cancers (Basel) ; 14(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36230875

RESUMO

Neoadjuvant chemoradiation followed by surgery (NCRT+S) has been widely applied to patients with locally advanced esophageal squamous cell carcinoma (ESCC); however, treatment trends and their survival outcomes in a real-world clinical setting are poorly understood. This study aimed to analyze real-world evidence to understand treatment patterns and outcomes for patients with ESCC. We analyzed the treatment pattern and 5-year overall survival (5yOS) by synthesizing the individuals' general characteristics, cancer information, and treatment records extracted from the Clinical Data Warehouse from 1994 to 2018. Of a total of 2151 patients, most patients received upfront surgery and 5yOS was 36.8% (31.4−43.1%). From 2003 to 2012, the use of NCRT increased, and 5yOS was improved to 42.2% (38.8−45.7%). Notably, after 2013, the proportion of NCRT+S markedly increased up to >50% of patients: 5yOS was much improved to 56.3% (53.2−59.6%). With regard to treatment, patients with NCRT+S had the most favorable 5yOS of 58.1% (53−63.7%), although that for patients with upfront surgery was 48.6% (45.9−51.5%, p < 0.001). Moreover, patients who received adjuvant therapy after surgery had better OS than those with surgery alone (58.4% (52.7−64.7%) vs. 47.3% (44.1−50.7%), p < 0.001). This analysis of real-world data demonstrated a significantly improved survival outcome for locally advanced ESCC over time since NCRT prior to surgery had been routinely applied. We revealed that NCRT+S was the most effective treatment for locally advanced ESCC and that adjuvant chemotherapy may be an encouraging therapeutic option for patients with positive nodes after upfront surgery.

10.
Acta Biomater ; 151: 561-575, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931279

RESUMO

The efficient production of dopaminergic neurons via the direct conversion of other cell types is of interest as a potential therapeutic approach for Parkinson's disease. This study aimed to investigate the use of elongated porous gold nanorods (AuNpRs) as an enhancer of cell fate conversion. We observed that AuNpRs promoted the direct conversion of fibroblasts into dopaminergic neurons in vivo and in vitro. The extent of conversion of fibroblasts into dopaminergic neurons depended on the porosity of AuNpRs, as determined by their aspect ratio. The mechanism underlying these results involves specific AuNpR-induced transcriptional changes that altered the expression of antioxidant-related molecules. The generation of dopaminergic neurons via the direct conversion method will open a new avenue for developing a therapeutic platform for Parkinson's disease treatment. STATEMENT OF SIGNIFICANCE: In this study, we applied modified gold nanoporous materials (AuNpRs) to the direct lineage reprogramming of dopaminergic neurons. The cell reprogramming process is energy-intensive, resulting in an excess of oxidative stress. AuNpRs facilitated the direct conversion of dopaminergic neurons by ameliorating oxidative stress during the reprogramming process. We have found this mechanistic clue from high throughput studies in this research work.


Assuntos
Nanoporos , Doença de Parkinson , Antioxidantes/metabolismo , Reprogramação Celular , Neurônios Dopaminérgicos/metabolismo , Ouro/metabolismo , Ouro/farmacologia , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia
11.
J Med Internet Res ; 24(7): e37928, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896020

RESUMO

BACKGROUND: A clinical decision support system (CDSS) is recognized as a technology that enhances clinical efficacy and safety. However, its full potential has not been realized, mainly due to clinical data standards and noninteroperable platforms. OBJECTIVE: In this paper, we introduce the common data model-based intelligent algorithm network environment (CANE) platform that supports the implementation and deployment of a CDSS. METHODS: CDSS reasoning engines, usually represented as R or Python objects, are deployed into the CANE platform and converted into C# objects. When a clinician requests CANE-based decision support in the electronic health record (EHR) system, patients' information is transformed into Health Level 7 Fast Healthcare Interoperability Resources (FHIR) format and transmitted to the CANE server inside the hospital firewall. Upon receiving the necessary data, the CANE system's modules perform the following tasks: (1) the preprocessing module converts the FHIRs into the input data required by the specific reasoning engine, (2) the reasoning engine module operates the target algorithms, (3) the integration module communicates with the other institutions' CANE systems to request and transmit a summary report to aid in decision support, and (4) creates a user interface by integrating the summary report and the results calculated by the reasoning engine. RESULTS: We developed a CANE system such that any algorithm implemented in the system can be directly called through the RESTful application programming interface when it is integrated with an EHR system. Eight algorithms were developed and deployed in the CANE system. Using a knowledge-based algorithm, physicians can screen patients who are prone to sepsis and obtain treatment guides for patients with sepsis with the CANE system. Further, using a nonknowledge-based algorithm, the CANE system supports emergency physicians' clinical decisions about optimum resource allocation by predicting a patient's acuity and prognosis during triage. CONCLUSIONS: We successfully developed a common data model-based platform that adheres to medical informatics standards and could aid artificial intelligence model deployment using R or Python.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Sepse , Inteligência Artificial , Registros Eletrônicos de Saúde , Nível Sete de Saúde , Humanos , Bases de Conhecimento
12.
JMIR Med Inform ; 10(6): e37689, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704364

RESUMO

BACKGROUND: Sepsis is diagnosed in millions of people every year, resulting in a high mortality rate. Although patients with sepsis present multimorbid conditions, including cancer, sepsis predictions have mainly focused on patients with severe injuries. OBJECTIVE: In this paper, we present a machine learning-based approach to identify the risk of sepsis in patients with cancer using electronic health records (EHRs). METHODS: We utilized deidentified anonymized EHRs of 8580 patients with cancer from the Samsung Medical Center in Korea in a longitudinal manner between 2014 and 2019. To build a prediction model based on physical status that would differ between sepsis and nonsepsis patients, we analyzed 2462 laboratory test results and 2266 medication prescriptions using graph network and statistical analyses. The medication relationships and lab test results from each analysis were used as additional learning features to train our predictive model. RESULTS: Patients with sepsis showed differential medication trajectories and physical status. For example, in the network-based analysis, narcotic analgesics were prescribed more often in the sepsis group, along with other drugs. Likewise, 35 types of lab tests, including albumin, globulin, and prothrombin time, showed significantly different distributions between sepsis and nonsepsis patients (P<.001). Our model outperformed the model trained using only common EHRs, showing an improved accuracy, area under the receiver operating characteristic (AUROC), and F1 score by 11.9%, 11.3%, and 13.6%, respectively. For the random forest-based model, the accuracy, AUROC, and F1 score were 0.692, 0.753, and 0.602, respectively. CONCLUSIONS: We showed that lab tests and medication relationships can be used as efficient features for predicting sepsis in patients with cancer. Consequently, identifying the risk of sepsis in patients with cancer using EHRs and machine learning is feasible.

14.
Biomaterials ; 278: 121157, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601195

RESUMO

Adult neurogenesis is the lifelong process by which new neurons are generated in the dentate gyrus. However, adult neurogenesis capacity decreases with age, and this decrease is closely linked to cognitive and memory decline. Our study demonstrated that electromagnetized gold nanoparticles (AuNPs) promote adult hippocampal neurogenesis, thereby improving cognitive function and memory consolidation in aged mice. According to single-cell RNA sequencing data, the numbers of neural stem cells (NSCs) and neural progenitors were significantly increased by electromagnetized AuNPs. Additionally, electromagnetic stimulation resulted in specific activation of the histone acetyltransferase Kat2a, which led to histone H3K9 acetylation in adult NSCs. Moreover, in vivo electromagnetized AuNP stimulation efficiently increased hippocampal neurogenesis in aged and Hutchinson-Gilford progeria mouse brains, thereby alleviating the symptoms of aging. Therefore, our study provides a proof-of-concept for the in vivo stimulation of hippocampal neurogenesis using electromagnetized AuNPs as a promising therapeutic strategy for the treatment of age-related brain diseases.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Encéfalo , Cognição , Camundongos , Neurogênese
15.
IEEE Trans Image Process ; 30: 7064-7073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34351857

RESUMO

The dichromatic reflection model has been popularly exploited for computer vison tasks, such as color constancy and highlight removal. However, dichromatic model estimation is an severely ill-posed problem. Thus, several assumptions have been commonly made to estimate the dichromatic model, such as white-light (highlight removal) and the existence of highlight regions (color constancy). In this paper, we propose a spatio-temporal deep network to estimate the dichromatic parameters under AC light sources. The minute illumination variations can be captured with high-speed camera. The proposed network is composed of two sub-network branches. From high-speed video frames, each branch generates chromaticity and coefficient matrices, which correspond to the dichromatic image model. These two separate branches are jointly learned by spatio-temporal regularization. As far as we know, this is the first work that aims to estimate all dichromatic parameters in computer vision. To validate the model estimation accuracy, it is applied to color constancy and highlight removal. Both experimental results show that the dichromatic model can be estimated accurately via the proposed deep network.

16.
J Med Internet Res ; 23(8): e23508, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34382940

RESUMO

BACKGROUND: Patient safety in the intensive care unit (ICU) is one of the most critical issues, and unplanned extubation (UE) is considered the most adverse event for patient safety. Prevention and early detection of such an event is an essential but difficult component of quality care. OBJECTIVE: This study aimed to develop and validate prediction models for UE in ICU patients using machine learning. METHODS: This study was conducted in an academic tertiary hospital in Seoul, Republic of Korea. The hospital had approximately 2000 inpatient beds and 120 ICU beds. As of January 2019, the hospital had approximately 9000 outpatients on a daily basis. The number of annual ICU admissions was approximately 10,000. We conducted a retrospective study between January 1, 2010, and December 31, 2018. A total of 6914 extubation cases were included. We developed a UE prediction model using machine learning algorithms, which included random forest (RF), logistic regression (LR), artificial neural network (ANN), and support vector machine (SVM). For evaluating the model's performance, we used the area under the receiver operating characteristic curve (AUROC). The sensitivity, specificity, positive predictive value, negative predictive value, and F1 score were also determined for each model. For performance evaluation, we also used a calibration curve, the Brier score, and the integrated calibration index (ICI) to compare different models. The potential clinical usefulness of the best model at the best threshold was assessed through a net benefit approach using a decision curve. RESULTS: Among the 6914 extubation cases, 248 underwent UE. In the UE group, there were more males than females, higher use of physical restraints, and fewer surgeries. The incidence of UE was higher during the night shift as compared to the planned extubation group. The rate of reintubation within 24 hours and hospital mortality were higher in the UE group. The UE prediction algorithm was developed, and the AUROC for RF was 0.787, for LR was 0.762, for ANN was 0.763, and for SVM was 0.740. CONCLUSIONS: We successfully developed and validated machine learning-based prediction models to predict UE in ICU patients using electronic health record data. The best AUROC was 0.787 and the sensitivity was 0.949, which was obtained using the RF algorithm. The RF model was well-calibrated, and the Brier score and ICI were 0.129 and 0.048, respectively. The proposed prediction model uses widely available variables to limit the additional workload on the clinician. Further, this evaluation suggests that the model holds potential for clinical usefulness.


Assuntos
Extubação , Unidades de Terapia Intensiva , Feminino , Mortalidade Hospitalar , Humanos , Aprendizado de Máquina , Masculino , Estudos Retrospectivos
17.
JMIR Med Inform ; 9(7): e23401, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34309567

RESUMO

BACKGROUND: Delirium frequently occurs among patients admitted to the intensive care unit (ICU). There is limited evidence to support interventions to treat or resolve delirium in patients who have already developed delirium. Therefore, the early recognition and prevention of delirium are important in the management of critically ill patients. OBJECTIVE: This study aims to develop and validate a delirium prediction model within 24 hours of admission to the ICU using electronic health record data. The algorithm was named the Prediction of ICU Delirium (PRIDE). METHODS: This is a retrospective cohort study performed at a tertiary referral hospital with 120 ICU beds. We only included patients who were 18 years or older at the time of admission and who stayed in the medical or surgical ICU. Patients were excluded if they lacked a Confusion Assessment Method for the ICU record from the day of ICU admission or if they had a positive Confusion Assessment Method for the ICU record at the time of ICU admission. The algorithm to predict delirium was developed using patient data from the first 2 years of the study period and validated using patient data from the last 6 months. Random forest (RF), Extreme Gradient Boosting (XGBoost), deep neural network (DNN), and logistic regression (LR) were used. The algorithms were externally validated using MIMIC-III data, and the algorithm with the largest area under the receiver operating characteristics (AUROC) curve in the external data set was named the PRIDE algorithm. RESULTS: A total of 37,543 cases were collected. After patient exclusion, 12,409 remained as our study population, of which 3816 (30.8%) patients experienced delirium incidents during the study period. Based on the exclusion criteria, out of the 96,016 ICU admission cases in the MIMIC-III data set, 2061 cases were included, and 272 (13.2%) delirium incidents occurred. The average AUROCs and 95% CIs for internal validation were 0.916 (95% CI 0.916-0.916) for RF, 0.919 (95% CI 0.919-0.919) for XGBoost, 0.881 (95% CI 0.878-0.884) for DNN, and 0.875 (95% CI 0.875-0.875) for LR. Regarding the external validation, the best AUROC were 0.721 (95% CI 0.72-0.721) for RF, 0.697 (95% CI 0.695-0.699) for XGBoost, 0.655 (95% CI 0.654-0.657) for DNN, and 0.631 (95% CI 0.631-0.631) for LR. The Brier score of the RF model is 0.168, indicating that it is well-calibrated. CONCLUSIONS: A machine learning approach based on electronic health record data can be used to predict delirium within 24 hours of ICU admission. RF, XGBoost, DNN, and LR models were used, and they effectively predicted delirium. However, with the potential to advise ICU physicians and prevent ICU delirium, prospective studies are required to verify the algorithm's performance.

18.
JMIR Med Inform ; 9(7): e24651, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34309570

RESUMO

BACKGROUND: Appropriate empirical treatment for candidemia is associated with reduced mortality; however, the timely diagnosis of candidemia in patients with sepsis remains poor. OBJECTIVE: We aimed to use machine learning algorithms to develop and validate a candidemia prediction model for patients with cancer. METHODS: We conducted a single-center retrospective study using the cancer registry of a tertiary academic hospital. Adult patients diagnosed with malignancies between January 2010 and December 2018 were included. Our study outcome was the prediction of candidemia events. A stratified undersampling method was used to extract control data for algorithm learning. Multiple models were developed-a combination of 4 variable groups and 5 algorithms (auto-machine learning, deep neural network, gradient boosting, logistic regression, and random forest). The model with the largest area under the receiver operating characteristic curve (AUROC) was selected as the Candida detection (CanDETEC) model after comparing its performance indexes with those of the Candida Score Model. RESULTS: From a total of 273,380 blood cultures from 186,404 registered patients with cancer, we extracted 501 records of candidemia events and 2000 records as control data. Performance among the different models varied (AUROC 0.771- 0.889), with all models demonstrating superior performance to that of the Candida Score (AUROC 0.677). The random forest model performed the best (AUROC 0.889, 95% CI 0.888-0.889); therefore, it was selected as the CanDETEC model. CONCLUSIONS: The CanDETEC model predicted candidemia in patients with cancer with high discriminative power. This algorithm could be used for the timely diagnosis and appropriate empirical treatment of candidemia.

19.
Prog Neurobiol ; 204: 102110, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34166773

RESUMO

Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.


Assuntos
Doença de Huntington , Animais , Corpo Estriado , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Proteína Supressora de Tumor p53/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
20.
Medicina (Kaunas) ; 56(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265954

RESUMO

Background and objectives: The aim of this study is to describe the temporal change in alert override with a minimally interruptive clinical decision support (CDS) on a Next-Generation electronic medical record (EMR) and analyze factors associated with the change. Materials and Methods: The minimally interruptive CDS used in this study was implemented in the hospital in 2016, which was a part of the new next-generation EMR, Data Analytics and Research Window for Integrated kNowledge (DARWIN), which does not generate modals, 'pop-ups' but show messages as in-line information. The prescription (medication order) and alerts data from July 2016 to December 2017 were extracted. Piece-wise regression analysis and linear regression analysis was performed to determine the temporal change and factors associated with it. Results: Overall, 2,706,395 alerts and 993 doctors were included in the study. Among doctors, 37.2% were faculty (professors), 17.2% were fellows, and 45.6% trainees (interns and residents). The overall override rate was 61.9%. There was a significant change in an increasing trend at month 12 (p < 0.001). We found doctors' positions and specialties, along with the number of alerts and medication variability, were significantly associated with the change. Conclusions: In this study, we found a significant temporal change of alert override. We also found factors associated with the change, which had statistical significance.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Sistemas de Registro de Ordens Médicas , Médicos , Registros Eletrônicos de Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...