Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(15): e2310282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190458

RESUMO

Acquisition of defect-free transition metal dichalcogenides (TMDs) channels with clean heterojunctions is a critical issue in the production of TMD-based functional electronic devices. Conventional approaches have transferred TMD onto a target substrate, and then apply the typical device fabrication processes. Unfortunately, those processes cause physical and chemical defects in the TMD channels. Here, a novel synthetic process of TMD thin films, named confined interfacial chalcogenization (CIC) is proposed. In the proposed synthesis, a uniform TMDlayer is created at the Au/transition metal (TM) interface by diffusion of chalcogen through the upper Au layer and the reaction of chalcogen with the underlying TM. CIC allows for ultraclean heterojunctions with the metals, synthesis of various homo- and hetero-structured TMDs, and in situ TMD channel formation in the last stage of device fabrication. The mechanism of TMD growth is revealed by the TM-accelerated chalcogen diffusion, epitaxial growth of TMD on Au(111). We demonstrated a wafer-scale TMD-based vertical memristors which exhibit excellent statistical concordance in device performance enabled by the ultraclean heterojunctions and superior uniformity in thickness. CIC proposed in this study represents a breakthrough in in TMD-based electronic device fabrication and marking a substantial step toward practical next-generation integrated electronics.

2.
Adv Sci (Weinh) ; 7(6): 1902315, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32195079

RESUMO

Controlling the growth behavior of organic semiconductors (OSCs) is essential because it determines their optoelectronic properties. In order to accomplish this, graphene templates with electronic-state tunability are used to affect the growth of OSCs by controlling the van der Waals interaction between OSC ad-molecules and graphene. However, in many graphene-molecule systems, the charge transfer between an ad-molecule and a graphene template causes another important interaction. This charge-transfer-induced interaction is never considered in the growth scheme of OSCs. Here, the effects of charge transfer on the formation of graphene-OSC heterostructures are investigated, using fullerene (C60) as a model compound. By in situ electrical doping of a graphene template to suppress the charge transfer between C60 ad-molecules and graphene, the layer-by-layer growth of a C60 film on graphene can be achieved. Under this condition, the graphene-C60 interface is free of Fermi-level pinning; thus, barristors fabricated on the graphene-C60 interface show a nearly ideal Schottky-Mott limit with efficient modulation of the charge-injection barrier. Moreover, the optimized C60 film exhibits a high field-effect electron mobility of 2.5 cm2 V-1 s-1. These results provide an efficient route to engineering highly efficient optoelectronic graphene-OSC hybrid material applications.

3.
Biocontrol Sci ; 25(1): 41-44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32173666

RESUMO

Chlorhexidine digluconate inhibits oral bacteria and the formation of dental plaque. Protamine sulfate, a polycationic protein, exerts antibacterial activity by altering the cell wall of bacteria. Extracts of Laminaria japonica and Rosmarinus officinalis display antimicrobial effects against oral pathogens. The purpose of this study was to investigate the synergistic effect of chlorhexidine digluconate and protamine sulfate on the inhibitory activity of L. japonica and R. officinalis extracts against Streptococcus mutans, a major etiological agent for dental caries. Minimal inhibitory concentrations (MICs) of chlorhexidine digluconate, protamine sulfate, and L. japonica and R. officinalis extracts were determined by broth dilution method. Synergistic effect of chlorhexidine digluconate or protamine sulfate and extracts of L. japonica or R. officinalis was determined by fractional inhibitory concentration index (FIC). FIC demonstrated the synergistic effects of the different combinations of antibacterial agents. In this study, the use of sub-MIC of chlorhexidine digluconate or protamine sulfate with sub-MIC of L. japonica and R. officinalis extracts resulted in synergistic inhibitory effects of these antibacterial agents except for chlorhexidine digluconate and L. japonica combination.


Assuntos
Antibacterianos/farmacologia , Clorexidina/análogos & derivados , Laminaria/química , Extratos Vegetais/farmacologia , Protaminas/farmacologia , Rosmarinus/química , Streptococcus mutans/efeitos dos fármacos , Clorexidina/farmacologia , Cárie Dentária/microbiologia , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana
4.
ACS Appl Mater Interfaces ; 11(2): 2211-2217, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30565452

RESUMO

Realization of flexible electronics is an attractive challenge because of its great potential in many applications. However, the design of flexible and highly conductive metal electrodes has been a bottleneck for the fabrication of flexible devices because bulk metals are easily fractured when subjected to elongation or compression. Here, we demonstrate metal-ceramic nanolaminates as electrodes for flexible electronic devices. Insertion of ceramic layers, each with a thickness of a few nanometers, into an otherwise metal electrode significantly improved its strength and bending stability and only slightly reduced its electrical conductivity. Finally, we demonstrated that a touch screen panel fabricated with metal-ceramic nanolaminate electrodes was stable to 200 000 cycles of folding to a bending radius of 3 mm.

5.
Small ; 14(30): e1801181, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29966039

RESUMO

Although there is significant progress in the chemical vapor deposition (CVD) of graphene on Cu surfaces, the industrial application of graphene is not realized yet. One of the most critical obstacles that limit the commercialization of graphene is that CVD graphene contains too many vacancies or sp3 -type defects. Therefore, further investigation of the growth mechanism is still required to control the defects of graphene. During the growth of graphene, sublimation of the Cu catalyst to produce Cu vapor occurs inevitably because the process temperature is close to the melting point of Cu. However, to date few studies have investigated the effects of Cu vapor on graphene growth. In this study, how the Cu vapor produced by sublimation affects the chemical vapor deposition of graphene on Cu surfaces is investigated. It is found that the presence of Cu vapor enlarges the graphene grains and enhances the efficiency of the defect-healing of graphene by CH4 . It is elucidated that these effects are due to the removal by Cu vapor of carbon adatoms from the Cu surface and oxygen-functionalized carbons from graphene. Finally, these insights are used to develop a method for the synthesis of uniform and high-quality graphene.

6.
Adv Mater ; 30(20): e1706851, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29603454

RESUMO

Ultrastable sensing characteristics of the ionic chemiresistor skin (ICS) that is designed by using an intrinsically stretchable thermoplastic polyurethane electrolyte as a volatile organic compound (VOC) sensing channel are described. The hierarchically assembled polymer electrolyte film is observed to be very uniform, transparent, and intrinsically stretchable. Systematic experimental and theoretical studies also reveal that artificial ions are evenly distributed in polyurethane matrix without microscale phase separation, which is essential for implementing high reliability of the ICS devices. The ICS displays highly sensitive and stable sensing of representative VOCs (including toluene, hexane, propanal, ethanol, and acetone) that are found in the exhaled breath of lung cancer patients. In particular, the sensor is found to be fully operational even after being subjected to long-term storage or harsh environmental conditions (relative humidity of 85% or temperature of 100 °C) or severe mechanical deformation (bending to a radius of curvature of 1 mm, or stretching strain of 100%), which can be an effective method to realize a human-adaptive and skin-attachable biosensor platform for daily use and early diagnosis.

7.
Adv Mater ; 30(15): e1706569, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29473234

RESUMO

A novel method is described for the direct growth of patterned graphene on dielectric substrates by chemical vapor deposition (CVD) in the presence of Cu vapor and using a solid aromatic carbon source, 1,2,3,4-tetraphenylnapthalene (TPN), as the precursor. The UV/O3 treatment of the TPN film both crosslinks TPN and results in a strong interaction between the substrate and the TPN that prevents complete sublimation of the carbon source from the substrate during CVD. Substrate-adhered crosslinked TPN is successfully converted to graphene on the substrate without any organic contamination. The graphene synthesized by this method shows excellent mechanical and chemical stability. This process also enables the simultaneous patterning of graphene materials, which can thus be used as transparent electrodes for electronic devices. The proposed method for the synthesis directly on substrates of patterned graphene is expected to have wide applications in organic and soft hybrid electronics.

8.
Adv Mater ; 29(32)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28635145

RESUMO

The synthesis of Bernal-stacked multilayer graphene over large areas is intensively investigated due to the value of this material's tunable electronic structure, which makes it promising for use in a wide range of optoelectronic applications. Multilayer graphene is typically formed via chemical vapor deposition onto a metal catalyst, such as Ni, a Cu-Ni alloy, or a Cu pocket. These methods, however, require sophisticated control over the process parameters, which limits the process reproducibility and reliability. Here, a new synthetic method for the facile growth of large-area Bernal-stacked multilayer graphene with precise layer control is proposed. A thin Ni film is deposited onto the back side of a Cu foil to induce controlled diffusion of carbon atoms through bulk Cu from the back to the front. The resulting multilayer graphene exhibits a 97% uniformity and a sheet resistance of 50 Ω sq-1 with a 90% transmittance after doping. The growth mechanism is elucidated and a generalized kinetic model is developed to describe Bernal-stacked multilayer graphene growth by the carbon atoms diffused through bulk Cu.

9.
Adv Mater ; 28(10): 2010-7, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26766210

RESUMO

A synthetic approach for high-quality graphene on rough Cu surfaces via chemical vapor deposition is proposed. High-quality graphene is synthesized on rough Cu surfaces by inducing surface faceting of Cu surfaces prior to graphene growth. The electron mobility of synthesized graphene on the rough Cu surfaces is enhanced to 10 335 cm(2) V(-1) s(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...