Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 132793, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38830492

RESUMO

Recombinant cytochrome P450 monooxygenases possess significant potential as biocatalysts, and efforts to improve heme content, electron coupling efficiency, and catalytic activity and stability are ongoing. Domain swapping between heme and reductase domains, whether natural or engineered, has thus received increasing attention. Here, we successfully achieved split intein-mediated reconstitution (IMR) of the heme and reductase domains of P450 BM3 both in vitro and in vivo. Intriguingly, the reconstituted enzymes displayed promising properties for practical use. IMR BM3 exhibited a higher heme content (>50 %) and a greater tendency for oligomerization compared to the wild-type enzyme. Moreover, these reconstituted enzymes exhibited a distinct increase in activity ranging from 165 % to 430 % even under the same heme concentrations. The reproducibility of our results strongly suggests that the proposed reconstitution approach could pave a new path for enhancing the catalytic efficiency of related enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450 , Heme , Inteínas , NADPH-Ferri-Hemoproteína Redutase , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Heme/química , Heme/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Domínios Proteicos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Biotechnol J ; 19(3): e2300712, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528341

RESUMO

Human fibroblast growth factor 7 (hFGF7) is a member of the paracrine-acting FGF family and mediates various reactions such as wound healing, tissue homeostasis, and liver regeneration. These activities make it a plausible candidate for pharmaceutical applications as a drug. However, the low expression level and stability of the recombinant hFGF7 were known to be major hurdles for further applications. Here, the expression level and stability of hFGF7 were attempted to improve by changing the order of amino acids through circular permutation (CP), thereby expecting an alternative fate according to the N-end rule. CP-hFGF7 variants were constructed systematically by using putative amino acid residues in the loop region that avoided the disruption of the structural integrity especially in the functional motif. Among them, cp-hFGF7115-114 revealed a relatively higher expression level in the soluble fraction than the wild-type hFGF7 and was efficiently purified (7 mg L-1) to apparent homogeneity. The activity and stability of the purified variant cp-hFGF7115-114 were comparable or superior to that of the wild-type hFGF7, thereby strongly suggesting that CP could be an alternative tool for the functional expression of hFGF7 in Escherichia coli.


Assuntos
Fator 7 de Crescimento de Fibroblastos , Humanos
3.
Protein Expr Purif ; 201: 106186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206960

RESUMO

Human fibroblast growth factor 19 (hFGF19) belongs to the endocrine FGF19 superfamily and is considered a potential agent to treat severe or relapsing nonalcoholic fatty liver disease. Numerous studies have confirmed the beneficial effects of this hormone on the related symptoms of the disease and attempts at producing recombinant proteins in various hosts are steadily proliferating. Recently, we reported that authentic hFGF19 can be solubly expressed through combining synonymous codon substitutions and co-expression with disulfide-bond isomerase (DsbC) in Escherichia coli. However, during purification, hFGF19 without the His-tag occasionally co-eluted with His-tagged DsbC when using metal affinity chromatography, thereby requiring auxiliary purification steps to achieve apparent homogeneity. This phenomenon provides evidence that hFGF19 specifically interacts with immobilized Ni2+, which can thus be used as an alternative tool for the purification of hFGF19. Consequently, we could simply and reproducibly purify hFGF19 from cell lysates by using Ni2+-immobilized metal affinity chromatography and stepwise gradient elution with imidazole.


Assuntos
Escherichia coli , Metais , Cromatografia de Afinidade/métodos , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hormônios/metabolismo , Humanos , Imidazóis/metabolismo , Isomerases , Metais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499645

RESUMO

The enzymatic transformation of various chemicals, especially using NADPH-dependent hydroxylase, into more soluble and/or high value-added products has steadily garnered increasing attention. However, the industrial application of these NADPH-dependent hydroxylases has been limited due to the high cost of the cofactor NADPH. As an alternative, enzymatic NADPH-regeneration systems have been developed and are frequently used in various fields. Here, we expressed and compared two recombinant isocitrate dehydrogenases (IDHs) from Corynebacterium glutamicum and Azotobacter vinelandii in Escherichia coli. Both enzymes were hyper-expressed in the soluble fraction of E. coli and were single-step purified to apparent homogeneity with yields of more than 850 mg/L. These enzymes also functioned well when paired with NADPH consumption systems. Specifically, NADPH was regenerated from NADP+ when an NADPH-consuming cytochrome P450 BM3 from Bacillus megaterium was incorporated. Therefore, both enzymes could be used as alternatives to the commonly used regeneration system for NADPH. These enzymes also have promising potential as genetic fusion partners with NADPH-dependent enzymes due to the monomeric nature of their quaternary structure, thereby resulting in self-sufficient biocatalysts via NADPH regeneration in a single polypeptide with NADPH-dependent activity.


Assuntos
Azotobacter vinelandii , Corynebacterium glutamicum , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , NADP/metabolismo , Isocitrato Desidrogenase/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
5.
Sci Rep ; 11(1): 21453, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728710

RESUMO

Fibroblast growth factor receptors (FGFRs) generate various transduction signals by interaction with fibroblast growth factors (FGFs) and are involved in various biological functions such as cell proliferation, migration, and differentiation. Malfunction of these proteins may lead to the development of various diseases, including cancer. Accordingly, FGFRs are considered an alternative therapeutic target for protein and/or gene therapy. However, the screening of antagonists or agonists of FGFRs is challenging due to their complex structural features associated with protein expression. Herein, we conducted the development of a protease-free cleavable tag (PFCT) for enhancing the solubility of difficult-to express protein by combining maltose-binding protein (MBP) and the C-terminal region of Npu intein. To validate the availability of the resulting tag for the functional production of extracellular domains of FGFRs (Ec_FGFRs), we performed fusion of PFCT with the N-terminus of Ec_FGFRs and analyzed the expression patterns. Almost all PFCT-Ec_FGFR fusion proteins were mainly detected in the soluble fraction except for Ec_FGFR4. Upon addition of the N-terminal region of Npu intein, approximately 85% of the PFCT-Ec_FGFRs was separated into PFCT and Ec_FGFR via intein-mediated cleavage. Additionally, the structural integrity of Ec_FGFR was confirmed by affinity purification using heparin column. Taken together, our study demonstrated that the PFCT could be used for soluble expression and selective separation of Ec_FGFRs.


Assuntos
Espaço Extracelular/metabolismo , Proteínas Ligantes de Maltose/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Humanos , Proteínas Ligantes de Maltose/genética , Fragmentos de Peptídeos/genética , Domínios Proteicos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Proteínas Recombinantes de Fusão/genética
6.
Microorganisms ; 8(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297586

RESUMO

Human fibroblast growth factor 19 (hFGF19) is a difficult-to-express protein that is frequently fused with another protein for soluble expression. However, residual amino acids after cleavage with protease represent one of the major problems in therapeutic protein development. Here, we introduced synonymous codon substitutions in the N-terminal region encoding sequence of hFGF19 and co-expressed disulfide bond isomerase (ΔssDsbC) to functionally express hFGF19 without any fusion protein. Synonymous codon substitution significantly increased hFGF19 expression. Subsequent co-expression of ΔssDsbC with a selected variant of hFGF19 (scvhFGF19) further increased the proportion of soluble hFGF19 expression in Escherichia coli XL1-Blue. Both total and soluble scvhFGF19 expression increased remarkably in the alternative host, E. coli Origami 2 with mutated thioredoxin reductase and glutathione reductase. scvhFGF19 purification by anion exchange and heparin affinity chromatography resulted in a yield of 6.5 mg/L under normal induction conditions in flask culture. As such, a high cell density culture is expected to achieve an even higher yield. The biological activities of purified scvhFGF19 were assessed based on its ability to activate ERK1/2 signaling pathway in HepG2 hepatocarcinoma cells. In conclusion, the strategy described here may represent an efficient alternative process for the production of hFGF19 and/or related proteins.

7.
J Agric Food Chem ; 68(24): 6683-6691, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32468814

RESUMO

In this study, we investigated an efficient enzymatic strategy for producing potentially valuable phloretin metabolites from phlorizin, a glucoside of phloretin that is rich in apple pomace. Almond ß-glucosidase efficiently removed phlorizin's glucose moiety to produce phloretin. CYP102A1 engineered by site-directed mutagenesis, domain swapping, and random mutagenesis catalyzed the highly regioselective C-hydroxylation of phloretin into 3-OH phloretin with high conversion yields. Under the optimal hydroxylation conditions of 15 g cells L-1 and a 20 mM substrate for whole-cell biocatalysis, phloretin was regioselectively hydroxylated into 3.1 mM 3-OH phloretin each hour. Furthermore, differentiation of 3T3-L1 preadipocytes into adipocytes and lipid accumulation were dramatically inhibited by 3-OH phloretin but promoted by phloretin. Consistent with these inhibitory effects, the expression of adipogenic regulator genes was downregulated by 3-OH phloretin. We propose a platform for the sustainable production and value creation of phloretin metabolites from apple pomace capable of inhibiting adipogenesis.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Florizina/química , Extratos Vegetais/química , Adipócitos/citologia , Animais , Proteínas de Bactérias/metabolismo , Biocatálise , Sistema Enzimático do Citocromo P-450/metabolismo , Frutas/química , Inibidores do Crescimento/química , Inibidores do Crescimento/farmacologia , Malus/química , Camundongos , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Floretina/química , Florizina/farmacologia , Extratos Vegetais/farmacologia , Engenharia de Proteínas
8.
Biotechnol Lett ; 41(11): 1275-1282, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31535307

RESUMO

OBJECTIVE: To obtain a recombinant flagellin derivative CBLB502, expressed in functionally soluble form, the technology of library construction and screening of synonymous codon variants was employed, and its expression, solubility, and activity were assessed. RESULTS: We screened several synonymous codon variants scvCBLB502s with the enhanced solubility from the constructed library, harboring the random substitutions of the first ten amino acid residues of the parental CBLB502 with synonymous codons. Among them, scvCBLB502-5 was purified (> 8.4 mg/l) by single step procedure using an affinity chromatography without any ancillary treatment with protease inhibitor cocktail solution and/or boiling at 90 °C. Subsequent study showed that the recombinant protein scvCBLB502-5 distinctly induced the TLR5 (Toll-Like Receptor 5)-mediated NF-κB activation and also IL-8 production in HEK293-hTLR5 cells. CONCLUSION: Results showed that scvCBLB502-5, engineered through the synonymous codon substitutions, was easily expressed in functionally soluble form and maintained the proper folding to be recognized by TLR5, as an inducer for pathogen-associated molecular pattern (PAMP).


Assuntos
Códon/genética , Escherichia coli/genética , Flagelina/genética , Peptídeos , Salmonella/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Peptídeos/genética , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA