Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virulence ; 13(1): 833-843, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35521696

RESUMO

We exploited bacterial infection assays using the fruit fly Drosophila melanogaster to identify anti-infective compounds that abrogate the pathological consequences in the infected hosts. Here, we demonstrated that a pyridine-3-N-sulfonylpiperidine derivative (4a) protects Drosophila from the acute infections caused by bacterial pathogens including Pseudomonas aeruginosa. 4a did not inhibit the growth of P. aeruginosa in vitro, but inhibited the production of secreted toxins such as pyocyanin and hydrogen cyanide, while enhancing the production of pyoverdine and pyochelin, indicative of iron deprivation. Based on its catechol moiety, 4a displayed iron-chelating activity in vitro toward both iron (II) and iron (III), more efficiently than the approved iron-chelating drugs such as deferoxamine and deferiprone, concomitant with more potent antibacterial efficacy in Drosophila infections and unique transcriptome profile. Taken together, these results delineate a Drosophila-based strategy to screen for antipathogenic compounds, which interfere with iron uptake crucial for bacterial virulence and survival in host tissues.


Assuntos
Drosophila , Infecções por Pseudomonas , Animais , Drosophila melanogaster , Ferro , Quelantes de Ferro/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Sulfonamidas
2.
Proc Natl Acad Sci U S A ; 119(11): e2118002119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271389

RESUMO

SignificanceYeiE has been identified as a master virulence factor of Cronobacter sakazakii. In this study, we determined the crystal structures of the regulatory domain of YeiE in complex with its physiological ligand sulfite ion (SO32-). The structure provides the basis for the molecular mechanisms for sulfite sensing and the ligand-dependent conformational changes of the regulatory domain. The genes under the control of YeiE in response to sulfite were investigated to reveal the functional roles of YeiE in the sulfite tolerance of the bacteria. We propose the molecular mechanism underlying the ability of gram-negative pathogens to defend against the innate immune response involving sulfite, thus providing a strategy to control the pathogenesis of bacteria.


Assuntos
Proteínas de Bactérias , Cronobacter sakazakii , Estresse Fisiológico , Sulfitos , Fatores de Transcrição , Fatores de Virulência , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cronobacter sakazakii/genética , Cronobacter sakazakii/metabolismo , Cronobacter sakazakii/patogenicidade , Cristalização , Ligantes , Domínios Proteicos , Sulfitos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Virulência/química , Fatores de Virulência/genética
3.
Virulence ; 13(1): 149-159, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34983312

RESUMO

Artemisinin (ARS) and its semi-synthetic derivatives are effective drugs to treat malaria and possess multiple therapeutic activities based on their endoperoxide bridge. Here, we showed that ARS displayed antibacterial efficacy in Drosophila systemic infections caused by bacterial pathogens but killed only Vibrio cholerae (VC) in vitro, involving reactive oxygen species (ROS) generation and/or DNA damage. This selective antibacterial activity of ARS was attributed to the higher intracellular copper levels in VC, in that the antibacterial activity was observed in vitro upon addition of cuprous ions even against other bacteria and was compromised by the copper-specific chelators neocuproine (NC) and triethylenetetramine (TETA) in vitro and in vivo. We suggest that copper can enhance or reinforce the therapeutic activities of ARS to be repurposed as an antibacterial drug for the treatment of bacterial infections.


Assuntos
Artemisininas , Cobre , Antibacterianos/farmacologia , Artemisininas/farmacologia , Cobre/farmacologia , Dano ao DNA
4.
J Med Microbiol ; 70(4)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33830911

RESUMO

Introduction. Antipathogenic or antivirulence strategy is to target a virulence pathway that is dispensable for growth, in the hope to mitigate the selection for drug resistance.Hypothesis/Gap Statment. Peroxide stress responses are one of the conserved virulence pathways in bacterial pathogens and thus good targets for antipathogenic strategy.Aim. This study aims to identify a new chemical compound that targets OxyR, the peroxide sensor required for the full virulence of the opportunistic human pathogen, Pseudomonas aeruginosa.Methodology. Computer-based virtual screening under consideration of the 'eNTRy' rules and molecular docking were conducted on the reduced form of the OxyR regulatory domain (RD). Selected hits were validated by their ability to phenocopy the oxyR null mutant and modulate the redox cycle of OxyR.Results. We first isolated three robust chemical hits that inhibit OxyR without affecting prototrophic growth or viability. One (compound 1) of those affected the redox cycle of OxyR in response to H2O2 treatment, in a way to impair its function. Compound 1 displayed selective antibacterial efficacy against P. aeruginosa in Drosophila infection model, without antibacterial activity against Staphylococcus aureus.Conclusion. These results suggest that compound 1 could be an antipathogenic hit inhibiting the P. aeruginosa OxyR. More importantly, our study provides an insight into the computer-based discovery of new-paradigm selective antibacterials to treat Gram-negative bacterial infections presumably with few concerns of drug resistance.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Transativadores/antagonistas & inibidores , Animais , Drosophila , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Simulação de Acoplamento Molecular , Mutação , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/mortalidade , Pseudomonas aeruginosa/genética , Taxa de Sobrevida , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Virulência/efeitos dos fármacos , Virulência/genética
5.
Viruses ; 11(3)2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889807

RESUMO

Despite the successful use of antibacterials, the emergence of multidrug-resistant bacteria has become a serious threat to global healthcare. In this era of antibacterial crisis, bacteriophages (phages) are being explored as an antibacterial treatment option since they possess a number of advantages over conventional antibacterials, especially in terms of specificity and biosafety; phages specifically lyse target bacteria while not affecting normal and/or beneficial bacteria and display little or no toxicity in that they are mainly composed of proteins and nucleic acids, which consequently significantly reduces the time and cost involved in antibacterial development. However, these benefits also create potential issues regarding antibacterial spectra and host immunity; the antibacterial spectra being very narrow when compared to those of chemicals, with the phage materials making it possible to trigger host immune responses, which ultimately disarm antibacterial efficacy upon successive treatments. In addition, phages play a major role in horizontal gene transfer between bacterial populations, which poses serious concerns for the potential of disastrous consequences regarding antibiotic resistance. Fortunately, however, recent advancements in synthetic biology tools and the speedy development of phage genome resources have allowed for research on methods to circumvent the potentially disadvantageous aspects of phages. These novel developments empower research which goes far beyond traditional phage therapy approaches, opening up a new chapter for phage applications with new antibacterial platforms. Herein, we not only highlight the most recent synthetic phage engineering and phage product engineering studies, but also discuss a new proof-of-concept for phage-inspired antibacterial design based on the studies undertaken by our group.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bacteriófagos/química , Animais , Antibacterianos/química , Bactérias/virologia , Infecções Bacterianas/terapia , Bacteriófagos/genética , Farmacorresistência Bacteriana Múltipla , Engenharia Genética , Variação Genética , Humanos , Camundongos , Terapia por Fagos/efeitos adversos , Biologia Sintética
6.
Parkinsonism Relat Disord ; 36: 109-110, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28073679

RESUMO

We report a 41-year-old man of presymptomatic spinocerebellar ataxia type 1. Diffusion tensor imaging (DTI) verified decreased fractional anisotropy of cerebellar afferent and efferent pathways compared to 5 age-matched healthy controls while conventional MRI revealed normal brain. DTI was valuable in detection of early microstructural damage of cerebellar pathways.


Assuntos
Imagem de Tensor de Difusão , Ataxias Espinocerebelares/diagnóstico por imagem , Adulto , Imagem de Tensor de Difusão/métodos , Humanos , Masculino , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Ataxias Espinocerebelares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...