Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 13(11): 5594-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24164650

RESUMO

Atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques with atomic level control enable a new class of hybrid organic-inorganic materials with improved functionality. In this work, the cross-plane thermal conductivity and volumetric heat capacity of three types of hybrid organic-inorganic zincone thin films enabled by MLD processes and alternate ALD-MLD processes were measured using the frequency-dependent time-domain thermoreflectance method. We revealed the critical role of backbone flexibility in the structural morphology and thermal conductivity of MLD zincone thin films by comparing the thermal conductivity of MLD zincone films with an aliphatic backbone to that with aromatic backbone. Much lower thermal conductivity values were obtained in ALD/MLD-enabled hybrid organic-inorganic zincone thin films compared to that of the ALD-enabled W/Al2O3 nanolaminates reported by Costescu et al. [Science 2004, 303, 989-990], which suggests that the dramatic material difference between organic and inorganic materials may provide a route for producing materials with ultralow thermal conductivity.


Assuntos
Formazans/química , Nanoestruturas/química , Nanotecnologia/métodos , Condutividade Térmica , Materiais Biomiméticos/química , Temperatura Alta , Compostos Inorgânicos/química , Compostos Orgânicos/química , Tamanho da Partícula , Propriedades de Superfície
2.
J Nanosci Nanotechnol ; 11(9): 7948-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22097511

RESUMO

Hybrid organic-inorganic films can be deposited using atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques. A special set of hybrid organic-inorganic films based on metal precursors and various organic alcohols yields metal alkoxide films that can be described as "metalcones." Many metalcone films are possible such as the "alucones" and "zincones" based on the reaction of trimethylaluminum and diethylzinc, respectively, with various organic alcohols such as ethylene glycol (EG). This paper reviews the previous work on metalcone MLD and discusses a variety of new metalcone systems. "Titanicones" are grown using TiCl4 and glycerol or EG and "zircones" are grown using zirconium tetra-tert-butoxide and EG. In addition, the organic alcohol can also be varied to change the properties within one metalcone family. For example, the glycerol triol precursor allows for more cross-linking and higher toughness in alucones than the EG diol precursor. Alloys can also be formed by combining metalcone MLD and metal oxide ALD. By varying the relative number of cycles of MLD and ALD, the composition and properties of the hybrid organic-inorganic films can be tuned from pure metalcone MLD to pure metal oxide ALD.

3.
Langmuir ; 27(24): 15155-64, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22029704

RESUMO

Molecular layer deposition (MLD) of aluminum alkoxide polymer films was examined using trimethlyaluminum (TMA) and glycidol (GLY) as the reactants. Glycidol is a high vapor pressure heterobifunctional reactant with both hydroxyl and epoxy chemical functionalites. These two different functionalities help avoid "double reactions" that are common with homobifuctional reactants. A variety of techniques, including in situ Fourier transform infrared (FTIR) spectroscopy and quartz crystal microbalance (QCM) measurements, were employed to study the film growth. FTIR measurements at 100 and 125 °C observed the selective reaction of the GLY hydroxyl group with the AlCH(3) surface species during GLY exposure. Epoxy ring-opening and methyl transfer from TMA to the surface epoxy species were then monitored during TMA exposure. This epoxy ring-opening reaction is dependent on strong Lewis acid-base interactions between aluminum and oxygen. The QCM experiments observed linear growth with self-limiting surface reactions at 100-175 °C under certain growth conditions. With a sufficient purge time of 20 s after TMA and GLY exposures at 125 °C, the mass gain per cycle (MGPC) was 19.8 ng/cm(2)-cycle. The individual mass gains after the TMA and GLY exposures were also consistent with a TMA/GLY stoichiometry of 4:3 in the MLD film. This TMA/GLY stoichiometry suggests the presence of Al(2)O(2) dimeric core species. The MLD films resulting from these TMA and GLY exposures also evolved with annealing temperature to form thinner conformal porous films with increased density. Non-self-limiting growth was a problem at shorter purge times and lower temperatures. With shorter purge times of 10 s at 125 °C, the MPGC increased dramatically to 134 ng/cm(2)-cycle. The individual mass gains after the TMA and GLY exposures in the CVD regime were consistent with a TMA/GLY stoichiometry of 1:1. The MGPC decreased progressively versus purge time. This behavior was attributed to the removal of reactants that could lead to CVD and the instability of the surface species after the reactant exposures. These results reveal that the TMA and GLY reaction displays much complexity and must be carefully controlled to be a useful MLD process.

4.
Langmuir ; 26(24): 19045-51, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21117634

RESUMO

Hybrid organic-inorganic films were grown by molecular layer deposition (MLD) with a three-step ABC reaction sequence using (A) trimethylaluminum (TMA), (B) ethanolamine (EA), and (C) maleic anhydride (MA) at 90 °C. Very large steady state mass gains of 1854-4220 ng/(cm(2) cycle) were measured depending on reaction conditions. These mass gains are much larger than typical mass gains for surface reactions. The quartz crystal microbalance (QCM) mass profiles during the TMA reaction were consistent with TMA diffusion into and out of the ABC films. The ABC mass gains per cycle also displayed a strong dependence on the TMA dose and purge times that was consistent with the effects of TMA diffusion. Multiple dose experiments conducted at 130 °C revealed that the ABC reactions were self-limiting for thin ABC films. For thicker ABC films, increased TMA diffusion into the ABC film led to non-self-limiting behavior. Numerical modeling assuming Fickian diffusion for TMA diffusing into and out of the ABC film could fit the QCM mass profiles. The results all indicate that TMA diffusion into the ABC MLD film plays a key role in the thin film growth. In addition, X-ray reflectivity (XRR) measurements revealed that the ABC films were exceptionally smooth.

5.
Acc Chem Res ; 42(4): 498-508, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19249861

RESUMO

The fabrication of many devices in modern technology requires techniques for growing thin films. As devices miniaturize, manufacturers will need to control thin film growth at the atomic level. Because many devices have challenging morphologies, thin films must be able to coat conformally on structures with high aspect ratios. Techniques based on atomic layer deposition (ALD), a special type of chemical vapor deposition, allow for the growth of ultra-thin and conformal films of inorganic materials using sequential, self-limiting reactions. Molecular layer deposition (MLD) methods extend this strategy to include organic and hybrid organic-inorganic polymeric materials. In this Account, we provide an overview of the surface chemistry for the MLD of organic and hybrid organic-inorganic polymers and examine a variety of surface chemistry strategies for growing polymer thin films. Previously, surface chemistry for the MLD of organic polymers such as polyamides and polyimides has used two-step AB reaction cycles using homo-bifunctional reactants. However, these reagents can react twice and eliminate active sites on the growing polymer surface. To avoid this problem, we can employ alternative precursors for MLD based on hetero-bifunctional reactants and ring-opening reactions. We can also use surface activation or protected chemical functional groups. In addition, we can combine the reactants for ALD and MLD to grow hybrid organic-inorganic polymers that should display interesting properties. For example, using trimethylaluminum (TMA) and various diols as reactants, we can achieve the MLD of alucone organic-inorganic polymers. We can alter the chemical and physical properties of these organic-inorganic polymers by varying the organic constituent in the diol or blending the alucone MLD films with purely inorganic ALD films to build a nanocomposite or nanolaminate. The combination of ALD and MLD reactants enlarges the number of possible sequential self-limiting surface reactions for film growth. Extensions to three-step ABC reaction cycles also offer many advantages to avoid the use of homo-bifunctional reactants and incorporate new functionality in the thin film. The advances in ALD have helped technological development in many areas, including semiconductor processing and magnetic disk-drive manufacturing. We expect that the advances in MLD will lead to innovations in polymeric thin-film products. Although there are remaining challenges, effective surface chemistry strategies are being developed for MLD that offer the opportunity for future advances in materials and device fabrication.

6.
Chemistry ; 15(17): 4458-63, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19283821

RESUMO

Uranyl ions [UO(2)](2+) in aqueous nitric acid can be extracted into supercritical CO(2) (sc-CO(2)) by using an imidazolium-based ionic liquid with tri-n-butyl phosphate (TBP) as a complexing agent. The transfer of uranium from the ionic liquid to the supercritical fluid phase was monitored by UV/Vis spectroscopy using a high-pressure fiber-optic cell. The form of the uranyl complex extracted into the sc-CO(2) phase was identified to be [UO(2)(NO(3))(2)(TBP)(2)]. The extraction results were confirmed by fluorescence spectroscopy and by neutron activation analysis. This technique has potential applications in the field of nuclear waste management for extracting other actinides.

7.
Appl Spectrosc ; 60(9): 958-63, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17002818

RESUMO

Nitroaromatics (such as dinitrotoluene, trinitrotoluene, and nitrobenzene) found in explosive vapors from buried landmines can be reduced to aminoaromatics by a novel process involving Pd metal nanocatalysts prepared in supercritical fluid carbon dioxide and supported on multi-walled carbon nanotubes. These aminoaromatics are fluorescent and, if desired, the fluorescence yield can be increased and the fluorescence maxima shifted further toward the red by reaction with appropriate derivatizing agents such as fluorescamine. Corrected spectra for these chemicals and their derivatives are included. Subpicomolar detection limits have already been achieved using a laboratory spectrofluorometer with a 150 W Xe arc lamp. Using lasers as excitation sources, this approach has the potential for developing a field sensor competitive with other methods currently used for detecting explosive vapors from land mines.

8.
Chemistry ; 12(6): 1760-6, 2006 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-16311989

RESUMO

For the first time, the study of a three-step extraction system of water/ionic liquid/supercritical CO2 has been performed. Extraction of trivalent lanthanum and europium from an aqueous nitric acid solution to a supercritical CO2 phase via an imidazolium-based ionic liquid phase is demonstrated, and extraction efficiencies higher than 87 % were achieved. The quantitative extraction is obtained by using different fluorinated beta-diketones with and without the addition of tri(n-butyl)phosphate. The complexation phenomenon occurring in the room-temperature ionic-liquid (RTIL) phase was evidenced by using luminescence spectroscopy.

9.
J Am Chem Soc ; 127(49): 17174-5, 2005 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-16332051

RESUMO

Palladium, rhodium, and bimetallic Pd/Rh nanoparticles synthesized in a water-in-hexane microemulsion can be deposited directly on surfaces of functionalized multiwalled carbon nanotubes with high yields. The CNT-supported Pd nanoparticles are active catalysts for hydrogenation of olefins, for carbon-carbon bond formation, and for carbon-oxygen bond cleavage reactions. The CNT-supported Rh nanoparticles are active catalysts for hydrogenation of arenes, and the CNT-supported bimetallic Pd/Rh nanoparticles show an unusually high catalytic activity for hydrogenation of anthracene. This simple and novel synthetic technique for making CNT-supported monometallic and bimetallic nanoparticles may have a wide range of catalytic applications for chemical syntheses.

10.
Chem Commun (Camb) ; (9): 1040-1, 2003 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-12772892

RESUMO

Palladium nanoparticles dispersed by a water-in-oil microemulsion are very effective catalysts for hydrogenation of olefins in an organic solvent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...