Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(32): e2204159, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35702762

RESUMO

Conventional electronic (e-) skins are a class of thin-film electronics mainly fabricated in laboratories or factories, which is incapable of rapid and simple customization for personalized healthcare. Here a new class of e-tattoos is introduced that can be directly implemented on the skin by facile one-step coating with various designs at multi-scale depending on the purpose of the user without a substrate. An e-tattoo is realized by attaching Pt-decorated carbon nanotubes on gallium-based liquid-metal particles (CMP) to impose intrinsic electrical conductivity and mechanical durability. Tuning the CMP suspension to have low-zeta potential, excellent wettability, and high-vapor pressure enables conformal and intimate assembly of particles directly on the skin in 10 s. Low-cost, ease of preparation, on-skin compatibility, and multifunctionality of CMP make it highly suitable for e-tattoos. Demonstrations of electrical muscle stimulators, photothermal patches, motion artifact-free electrophysiological sensors, and electrochemical biosensors validate the simplicity, versatility, and reliability of the e-tattoo-based approach in biomedical engineering.


Assuntos
Gálio , Nanotubos de Carbono , Tatuagem , Atenção à Saúde , Condutividade Elétrica , Eletrônica , Reprodutibilidade dos Testes
2.
iScience ; 24(12): 103550, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34917907

RESUMO

Along with the advancement in neural engineering techniques, unprecedented progress in the development of neural interfaces has been made over the past few decades. However, despite these achievements, there is still room for further improvements especially toward the possibility of monitoring and modulating neural activities with high resolution and specificity in our daily lives. In an effort of taking a step toward the next-generation neural interfaces, we want to highlight the recent progress in neural technologies. We will cover a wide scope of such developments ranging from novel platforms for highly specific recording and modulation to system integration for practical applications of novel interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA