Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(14): 14032-14042, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428961

RESUMO

Lithium-sulfur (Li-S) batteries using Li2S and Li-free anodes have emerged as a potential high-energy and safe battery technology. Although the operation of Li-S full batteries based on Li2S has been demonstrated at room temperature, their effective use at a subzero temperature has not been realized due to the low electrochemical utilization of Li2S. Here, ammonium nitrate (NH4NO3) is introduced as a functional additive that allows Li-S full batteries to operate at -10 °C. The polar N-H bonds in the additive alter the activation pathway of Li2S by inducing the dissolution of the Li2S surface. Then, Li2S with an amorphized surface layer undergoes the modified activation process, which consists of the disproportionation and direct conversion reaction, through which Li2S is efficiently converted into S8. The Li-S full battery using NH4NO3 delivers a reversible capacity and cycling stability over 400 cycles at -10 °C.

2.
ACS Appl Mater Interfaces ; 11(34): 30936-30942, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31380614

RESUMO

A series of Ni-rich Li[NixCo(1-x)/2Mn(1-x)/2]O2 (x = 0.9, 0.92, 0.94, 0.96, 0.98, and 1.0) (NCM) cathodes are prepared to study their capacity fading behaviors. The intrinsic trade-off between the capacity gain and compromised cycling stability is observed for layered cathodes with x ≥ 0.9. The initial specific capacities of LiNiO2 and Li[Ni0.9Co0.05Mn0.05]O2 are 245 mAh g-1 (91% of the theoretical capacity) and 230 mAh g-1, and their corresponding capacity retentions are 72.5% and 88.4%. However, the capacity retention characteristic deteriorates at an increasingly faster rate for x > 0.95, in contrast with the nearly linear increase of specific capacity. The fast capacity fading stems from the chemical attack of the cathode by the electrolyte infiltrated through the microcracks, resulting from the mechanical instability inflicted by the anisotropic internal strain caused by the H2 ⇆ H3 phase transition. Thus, the capacity fading of the NCM cathodes for x > 0.9 critically depends on the extent of the H2 → H3 phase transition. Retardation or protraction of the H2 ⇆ H3 phase transition by engineering the microstructure should improve the cycle life of these highly Ni-enriched NCM cathodes.

3.
ACS Nano ; 12(12): 12912-12922, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30475595

RESUMO

O3-type Na[Ni xCo yMn z]O2 materials are attractive cathodes for sodium-ion batteries because of their full cell fabrication practicality, high energy density, and relatively easy technology transfer arising from their similarity to Li[Ni xCo yMn z]O2 materials, yet their performance viability with Ni-rich composition ( x ≥ 0.6) is still doubtful. More importantly, their capacity degradation mechanism remains to be established. In this paper, we introduce an O3-type Ni-rich AlF3-coated nanorod gradient Na[Ni0.65Co0.08Mn0.27]O2 cathode with enhanced electrochemical performance in both half-cells and full cells. AlF3-coated nanorod gradient Na[Ni0.65Co0.08Mn0.27]O2 particles were synthesized through a combination of dry ball-mill coating and columnar composition gradient design and deliver a discharge capacity of 168 mAh g-1 with 90% capacity retention in half cells (50 cycles) and 132 mAh g-1 with 90% capacity retention in full cells (200 cycles) at 75 mA g-1 (0.5C, 1.5-4.1 V). Through analysis of the cycled electrodes, the capacity-degradation mechanism was unraveled in O3-type Ni-rich Na[Ni xCo yMn z]O2 from a structural perspective with emphasis on high-resolution transmission electron microscopy, providing valuable information on improving O3-type Na[Ni xCo yMn z]O2 cathode performance.

4.
Sci Rep ; 8(1): 13907, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224773

RESUMO

Non-magnetic (NM) metals with strong spin-orbit coupling have been recently explored as a probe of interface magnetism on ferromagnetic insulators (FMI) by means of the spin Hall magnetoresistance (SMR) effect. In NM/FMI heterostructures, increasing the spin mixing conductance (SMC) at the interface comes as an important step towards devices with maximized SMR. Here we report on the study of SMR in Pt/Fe3O4 bilayers at cryogenic temperature, and identify a strong dependence of the determined real part of the complex SMC on the interface roughness. We tune the roughness of the Pt/Fe3O4 interface by controlling the growth conditions of the Fe3O4 films, namely by varying the thickness, growth technique, and post-annealing processes. Field-dependent and angular-dependent magnetoresistance measurements sustain the clear observation of SMR. The determined real part of the complex SMC of the Pt/Fe3O4 bilayers ranges from 4.96 × 1014 Ω-1 m-2 to 7.16 × 1014 Ω-1 m-2 and increases with the roughness of the Fe3O4 underlayer. We demonstrate experimentally that the interface morphology, acting as an effective interlayer potential, leads to an enhancement of the spin mixing conductance.

5.
ACS Appl Mater Interfaces ; 9(19): 16063-16070, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28443657

RESUMO

All-solid-state Li-rechargeable batteries using a 500 nm-thick LiCoO2 (LCO) film deposited on two NASICON-type solid electrolyte substrates, LICGC (OHARA Inc.) and Li1.3Al0.3Ti1.7(PO4)3 (LATP), are constructed. The postdeposition annealing temperature prior to the cell assembly is critical to produce a stable sharp LCO/electrolyte interface and to develop a strong crystallographic texture in the LCO film, conducive to migration of Li ions. Although the cells deliver a limited discharge capacity, the cells cycled stably for 50 cycles. The analysis of the LCO/electrolyte interfaces after cycling demonstrates that the sharp interface, once formed by proper thermal annealing, will remain stable without any evidence for contamination and with minimal intermixing of the constituent elements during cycling. Hence, although ionic conductivity of the NASICON-type solid electrolyte is lower than that of the sulfide electrolytes, the NACSICON-type electrolytes will maintain a stable interface in contact with a LCO cathode, which should be beneficial to improving the capacity retention as well as the rate capability of the all-solid state cell.

6.
ChemSusChem ; 9(20): 2948-2956, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27650037

RESUMO

The reaction mechanism of α-MnO2 having 2×2 tunnel structure with zinc ions in a zinc rechargeable battery, employing an aqueous zinc sulfate electrolyte, was investigated by in situ monitoring structural changes and water chemistry alterations during the reaction. Contrary to the conventional belief that zinc ions intercalate into the tunnels of α-MnO2 , we reveal that they actually precipitate in the form of layered zinc hydroxide sulfate (Zn4 (OH)6 (SO4 )⋅5 H2 O) on the α-MnO2 surface. This precipitation occurs because unstable trivalent manganese disproportionates and is dissolved in the electrolyte during the discharge process, resulting in a gradual increase in the pH value of the electrolyte. This causes zinc hydroxide sulfate to crystallize from the electrolyte on the electrode surface. During the charge process, the pH value of the electrolyte decreases due to recombination of manganese on the cathode, leading to dissolution of zinc hydroxide sulfate back into the electrolyte. An analogous phenomenon is also observed in todorokite, a manganese dioxide polymorph with 3×3 tunnel structure that is an indication for the critical role of pH changes of the electrolyte in the reaction mechanism of this battery system.


Assuntos
Fontes de Energia Elétrica , Eletrólitos/química , Concentração de Íons de Hidrogênio , Zinco/química , Cristalografia por Raios X , Eletrodos , Compostos de Manganês/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Óxidos/química , Espectrometria por Raios X , Difração de Raios X
7.
Sci Rep ; 4: 6066, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25317571

RESUMO

Zn-ion batteries are emerging energy storage systems eligible for large-scale applications, such as electric vehicles. These batteries consist of totally environmentally-benign electrode materials and potentially manufactured very economically. Although Zn/α-MnO2 systems produce high energy densities of 225 Wh kg(-1), larger than those of conventional Mg-ion batteries, they show significant capacity fading during long-term cycling and suffer from poor performance at high current rates. To solve these problems, the concrete reaction mechanism between α-MnO2 and zinc ions that occur on the cathode must be elucidated. Here, we report the intercalation mechanism of zinc ions into α-MnO2 during discharge, which involves a reversible phase transition of MnO2 from tunneled to layered polymorphs by electrochemical reactions. This transition is initiated by the dissolution of manganese from α-MnO2 during discharge process to form layered Zn-birnessite. The original tunneled structure is recovered by the incorporation of manganese ions back into the layers of Zn-birnessite during charge process.

8.
Nano Lett ; 14(3): 1620-6, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24524729

RESUMO

While much research effort has been devoted to the development of advanced lithium-ion batteries for renewal energy storage applications, the sodium-ion battery is also of considerable interest because sodium is one of the most abundant elements in the Earth's crust. In this work, we report a sodium-ion battery based on a carbon-coated Fe3O4 anode, Na[Ni0.25Fe0.5Mn0.25]O2 layered cathode, and NaClO4 in fluoroethylene carbonate and ethyl methanesulfonate electrolyte. This unique battery system combines an intercalation cathode and a conversion anode, resulting in high capacity, high rate capability, thermal stability, and much improved cycle life. This performance suggests that our sodium-ion system is potentially promising power sources for promoting the substantial use of low-cost energy storage systems in the near future.

9.
J Phys Chem B ; 118(11): 3035-40, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24552259

RESUMO

It was demonstrated that hydrophobicity of solid supported planar dipalmitoyl phosphatidylcholine (DPPC) phospholipid multilayer can be greatly increased by incorporating a transmembrane protein, gramicidin, into the DPPC membrane. The contact angle of deionized water droplet on the gramicidin-modified DPPC membrane increased from 0° (complete wetting) without gramicidin to 55° after adding 15 mol % gramicidin. The increased hydrophobicity of the gramicidin-modified DPPC membrane allowed the membrane to remain stable at the air/water interface as well as underwater. The Au nanoparticles deposited on the gramicidin-modified DPPC membrane reproduced the characteristic surface plasmon resonance peak after being kept underwater or in phosphate-buffered saline solution for 5 days, attesting to the membrane stability in an aqueous environment. The enhanced underwater stability of the lipid multilayer substantially broadens the potential application of the lipid multilayer which includes biosensing, enzymatic fuel cell, surface enhanced Raman spectroscopy substrate.


Assuntos
Gramicidina/química , Fosfolipídeos/química , Água/química , 1,2-Dipalmitoilfosfatidilcolina/química , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica
10.
Nano Lett ; 14(2): 416-22, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24400876

RESUMO

For the first time, we report the electrochemical activity of anatase TiO2 nanorods in a Na cell. The anatase TiO2 nanorods were synthesized by a hydrothermal method, and their surfaces were coated by carbon to improve the electric conductivity through carbonization of pitch at 700 °C for 2 h in Ar flow. The resulting structure does not change before and after the carbon coating, as confirmed by X-ray diffraction (XRD). Transmission electron microscopic images confirm the presence of a carbon coating on the anatase TiO2 nanorods. In cell tests, anodes of bare and carbon-coated anatase TiO2 nanorods exhibit stable cycling performance and attain a capacity of about 172 and 193 mAh g(-1) on the first charge, respectively, in the voltage range of 3-0 V. With the help of the conductive carbon layers, the carbon-coated anatase TiO2 delivers more capacity at high rates, 104 mAh g(-1) at the 10 C-rate (3.3 A g(-1)), 82 mAh g(-1) at the 30 C-rate (10 A g(-1)), and 53 mAh g(-1) at the 100 C-rate (33 A g(-1)). By contrast, the anode of bare anatase TiO2 nanorods delivers only about 38 mAh g(-1) at the 10 C-rate (3.3 A g(-1)). The excellent cyclability and high-rate capability are the result of a Na(+) insertion and extraction reaction into the host structure coupled with Ti(4+/3+) redox reaction, as revealed by X-ray absorption spectroscopy.

11.
Mater Sci Eng C Mater Biol Appl ; 36: 49-56, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24433886

RESUMO

1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayer with a thin layer of water molecules inserted in the hydrophobic region was simulated at 300K to observe the pore structure formation during escape of the water molecules from the hydrophobic region. The transformation of the water slab into a cylindrical droplet in the hydrophobic region, which locally deformed the lipid monolayer, was prerequisite to the pore formation. If the thickness of the interlayer water was increased beyond a critical value, the local deformation was suppressed as such deformation would rupture the lipid bilayer. Hence, it was demonstrated that the pore structure formation or local permeability of the lipid membrane is closely related to the rigidity of the lipid membrane.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfolipídeos/química , Água/química , Deutério/química , Fosfatidilcolinas/química , Temperatura , Fatores de Tempo
12.
ACS Appl Mater Interfaces ; 5(24): 13426-31, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24236914

RESUMO

Ordered mesoporous carbon (OMC) with highly ordered pore channels was applied as an oxygen-side electrode for a Li-O2 battery. To evaluate the effect of the pore channel size on battery performance, we employed OMCs possessing two different pore sizes (6 and 17 nm). When cycled at a current density of 200 mA g(-1)carbon, the OMC electrodes reduced polarization in the oxygen evolution reaction by 0.1 V compared to those consisting of conventional super P carbon electrode. X-ray diffraction and transmission electron microscopy of the discharged oxygen electrodes provided evidence for the formation of amorphous Li2O2, a product of the oxygen reduction reaction, inside the OMC pores rather than on the electrode surface as in the case of the super P electrode. The OMC electrodes were also effective at high current densities (500 mA g(-1)carbon and 1000 mA g(-1)carbon).


Assuntos
Fontes de Energia Elétrica , Lítio/química , Oxigênio/química , Carbono/química , Técnicas Eletroquímicas , Eletrodos , Porosidade
13.
J Nanosci Nanotechnol ; 13(9): 6150-2, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24205618

RESUMO

Coarsening behavior of Au nanoparticles (AuNPs) embedded in a liquid crystalline lipid (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP) membrane was investigated by heat treating the AuNP-embedded DOTAP membrane at 80 degrees C with 15% and 80% relative humidity (RH). The coarsening rate was (D) to approximately t0.6 regardless of the humidity; however, the spatial distribution and the coarsening mechanism differed depending on the humidity. In addition, extended treatment at 15% RH resulted in formation of large polygonized AuNPs from the lipid segregation.

14.
Langmuir ; 29(43): 13251-7, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24079973

RESUMO

A planar dipalmitoyl phosphatidylcholine (DPPC) multilayer phospholipid membrane was structurally modified by introducing a transmembrane protein, gramicidin (up to 25 mol %), to study its effect on the metal nanoparticles deposited on the membrane. Without gramicidin, when 3-nm-thick Ag, Sn, Al, and Au were deposited, the nanoparticles hardly nucleated on the DPPC membrane in rigid gel state (except for Au); however, the gramicidin addition dramatically enhanced the DPPC membrane surface's affinity for metal atoms so that a dense array of metal (Ag, Sn, and Au) or metal-oxide (Al-oxide) nanoparticles was produced on the membrane surface. The particle sizes ranged from 3 to 15 nm depending on the metal and gramicidin concentration, whereas the particle density was strongly dictated by the gramicidin concentration. The proposed method provides a convenient, generally applicable synthesis route for preparing different metal or metal-oxide nanoparticles on a relatively robust biocompatible membrane.


Assuntos
Ouro/química , Gramicidina/química , Nanopartículas Metálicas/química , Fosfolipídeos/química , Prata/química , Estanho/química , Tamanho da Partícula , Propriedades de Superfície
15.
J Nanosci Nanotechnol ; 13(5): 3451-4, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858877

RESUMO

In this paper, we investigated the optical and structural properties of the Ag:Ta2O5 nanocomposites. The nanocomposite films were prepared by magnetron co-sputtering of Ta2O5 with Ag chips. The transmission electron microscopy images clearly revealed that Ag nanoparticles were successfully produced by post-thermal annealing of the deposited films. The reflection spectra exhibited the surface plasmon resonance behavior. The photoluminescence (PL) spectra indicated that the Ag:Ta2O5 nanocomposites exhibited larger PL intensity than pure Ag or pure Ta2O5. The PL enhancement is thought to be due to the surface plasmon resonance of Ag nanoparticles. From the spatial intensity distributions that were obtained by solving Maxwell equations using the three-dimensional, finite-difference time-domain method, we found that there was strong confinement of optical field near the Ag nanoparticle. This optical confinement effect makes it possible to exhibit the enhanced PL.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Óxidos/química , Prata/química , Tantálio/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Refratometria , Propriedades de Superfície
16.
Nano Lett ; 13(6): 2971-5, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23679097

RESUMO

In this Letter we report an electrochemical and morphological study of the response of lithium-oxygen cells cycled at various temperatures, that is, ranging from -10 to 70 °C. The results show that the electrochemical process of the cells is thermally influenced in an opposite way, that is, by a rate decrease, due to a reduced diffusion of the lithium ions from the electrolyte to the electrode interface, at low temperature and a rate enhancement, due to the decreased electrolyte viscosity and consequent increased oxygen mobility, at high temperature. In addition, we show that the temperature also influences the crystallinity of lithium peroxide, namely of the product formed during cell discharge.

17.
Nat Mater ; 11(11): 942-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042415

RESUMO

Nickel-rich layered lithium transition-metal oxides, LiNi(1-x)M(x)O(2) (M = transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost. However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures. Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215 mA h g(-1)), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.

18.
Nano Lett ; 12(8): 4333-5, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22812655

RESUMO

The electrochemical reaction of a lithium-oxygen cell using a tetraethylene glycol dimethyl ether-lithium triflate, TEGDME-LiCF(3)SO(3) electrolyte, is investigated by a detailed transmission electron microscopy analysis. The results confirm the reversibility of the process by showing the formation-dissolution of lithium peroxide, Li(2)O(2), upon repeating cell charge and discharge cycles.

19.
Biochim Biophys Acta ; 1818(11): 2884-91, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22820148

RESUMO

Direct deposition of a noble metal layer onto a solid-supported membrane was proposed as an indirect microscopy tool to visually observe different lipid phases that may develop in the lipid membrane. The method relied on the different permeability of the lipid membrane towards the incident atoms during deposition. Liquid state or structural defects such as phase boundaries, step ledges in a multi-lamellar stack, and pores permitted the metal atoms to penetrate and nucleate inside the membrane whereas rigid gel state was relatively impermeable to the incident atoms, thus enabling visualization of liquid phase or structural defects inside the gel state. Based on the proposed method, we demonstrated the phase states resulting from thermotropic transitions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dioleoylphosphatidylethanolamine (DOPE)/DPPC mixture, and 1,2-dioleoyl-3-trimethylammonium propane (DOTAP). Although the proposed method does not allow in-situ observation of equilibrium states, the method should be an excellent complementary tool for visualizing the lipid phases as the method can resolve fine structural details (up to tens of nanometer scale) as seen in the DPPC membrane while providing macroscopic images (up to several micrometers).


Assuntos
Lipídeos de Membrana/química , Nanopartículas Metálicas , Metais/química , Fosfolipídeos/química , Microscopia Eletrônica de Transmissão , Estrutura Molecular
20.
J Colloid Interface Sci ; 368(1): 257-62, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22196347

RESUMO

The photoluminescence characteristic of the SnO(x)/Sn nanoparticles deposited on a solid supported liquid-crystalline phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine) membrane was probed after plasma etching the nanoparticle monolayer. It was shown that the plasma etching of the nanoparticle surface greatly altered the particle morphology and enhanced the PL effect, especially when the particle size was below 10 nm in spite of strong presence of surrounding carbon. The enhancement mainly stemmed from the growth of a new PL peak due to the additional defect states produced on the nanoparticle surface by the plasma etching. It was also shown that hydrating the SnO(x)/Sn nanoparticles similarly improved the PL response of the nanoparticles as the hydration produced an additional oxygen-rich oxide layer on the particle surface.


Assuntos
Bicamadas Lipídicas/química , Luminescência , Lipídeos de Membrana/química , Nanopartículas , Fosfatidilcolinas/química , Compostos de Estanho/química , Estanho/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...