Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycobiology ; 47(3): 346-349, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565471

RESUMO

AMP-activated protein kinase sucrose non-fermenting 1 (Snf1) is a representative regulator of energy status that maintains cellular energy homeostasis. In addition, Snf1 is involved in the mediation of environmental stress such as salt stress. Snf1 regulates metabolic enzymes such as acetyl-CoA carboxylase, indicating a possible role for Snf1 in metabolic regulation. In this article, we performed nuclear magnetic resonance (NMR) spectroscopy to profile the metabolic changes induced by Snf1 under environmental stress. According to our NMR data, we suggest that Snf1 plays a role in regulating cellular concentrations of a variety of metabolites during environmental stress responses.

2.
J Microbiol Biotechnol ; 29(8): 1212-1220, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31336431

RESUMO

The study of metabolomics in natural products using the diverse analytical instruments including GC-MS, LC-MS, and NMR is useful for the exploration of physiological and biological effects and the investigation of drug discovery and health functional foods. Cordyceps militaris has been very attractive to natural medicine as a traditional Chinese medicine, due to its various bioactive properties including anti-cancer and anti-oxidant effects. In this study, we analyzed the metabolite profile in 50% ethanol extracts of C. militaris fruit bodies from three development periods (growth period, matured period, and aging period) using 1H-NMR, and identified 44 metabolites, which are classified as 16 amino acids, 10 organic acids, 5 carbohydrates, 3 nucleotide derivatives, and 10 other compounds. Among the three development periods of the C. militaris fruit body, the aging period showed significantly higher levels of metabolites including cordycepin, mannitol (cordycepic acid), and ß-glucan. Interestingly, these bioactive metabolites are positively correlated with antitumor growth effect; the extract of the aging period showed significant inhibition of HepG2 hepatic cancer cell proliferation. These results showed that the aging period during the development of C. militaris fruit bodies was more highly enriched with bioactive metabolites that are associated with cancer cell growth inhibition.


Assuntos
Antineoplásicos/isolamento & purificação , Cordyceps/química , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Desoxiadenosinas/análise , Descoberta de Drogas , Carpóforos/química , Células Hep G2/efeitos dos fármacos , Humanos , Manitol/análise , Medicina Tradicional Chinesa , beta-Glucanas/análise
3.
J Microbiol ; 57(1): 54-63, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30594983

RESUMO

Cordyceps militaris is a species of Cordyceps that is classified in the Cordycipitaceae family and is well known in East Asia as a traditional medicinal mushroom. Its artificial fruit body has been widely cultivated for commercial use in cosmetics, functional food, and medicine. To explore the metabolites associated with fruit body development, we conducted gas chromatography mass spectrometry (GC-MS) analyses based on developmental stage, which was divided into the growth period (stage 1, stage 2, and stage 3) and aging period (stage 4). We detected 39 biochemical metabolites associated with nucleotide, carbohydrate, and amino acid metabolism. Cordycepin, one of the representative bioactive compounds in C. militaris, was significantly enriched in stage 4 of aging period and is associated with glucose accumulation. The accumulation of cordycepin in stage 4 of aging period also seems to be related to the glutamine and glutamic acid pathway. Our results also showed enrichment of other bioactive compounds such as mannitol and xylitol in stage 4 of aging period. Our metabolomic profiling based on the developmental stages of C. militaris is useful for exploring bioactive compounds (e.g., cordycepin, mannitol, GABA, and xylitol) that are enriched in stage 4 of aging period and understanding the biosynthetic mechanisms associated with cordycepin production. Through optimization of fruit body cultivation by selecting stage 4 of aging period as a harvesting time, our findings can be utilized in food and medical applications of C. militaris in future.


Assuntos
Cordyceps/metabolismo , Desoxiadenosinas/análise , Cordyceps/química , Cordyceps/crescimento & desenvolvimento , Desoxiadenosinas/metabolismo , Carpóforos/química , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Manitol/análise , Manitol/metabolismo , Metabolômica
4.
Saudi J Biol Sci ; 25(6): 1128-1134, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30174512

RESUMO

Metabolite profiling of Wolfiporia cocos (family: Polyporaceae) had been much advancement in recent days, and its analysis by nuclear magnetic resonance (NMR) spectroscopy has become well established. However, the highly important trait of W. cocos still needs advanced protocols despite some standardization. Partial least squares discriminant analysis (PLS-DA) was used as the multivariate statistical analysis of the 1H NMR data set. The PLS-DA model was validated, and the key metabolites contributing to the separation in the score plots of different ethanol W. cocos extract. 1H NMR spectroscopy of W. cocos identified 33 chemically diverse metabolites in D2O, consisting of 13 amino acids, 11 organic acids 2 sugars, 3 sugar alcohols, 1 nucleoside, and 3 others. Among these metabolites, the levels of tyrosine, proline, methionine, sarcosine, choline, acetoacetate, citrate, 4-aminobutyrate, aspartate, maltose, malate, lysine, xylitol, lactate threonine, leucine, valine, isoleucine, uridine, guanidoacetate, arabitol, mannitol, glucose, and betaine were increased in the 95% ethanol extraction sample compared with the levels in other samples, whereas level of acetate, phenylalanine, alanine, succinate, and fumarate were significantly increased in the 0% ethanol extraction sample. A biological triterpenoid, namely pachymic acid, was detected from different ethanol P. cocos extract using 1H-NMR spectra were found in CDCl3. This is the first report to perform the metabolomics profiling of different ethanol W. cocos extract. These researches suggest that W. cocos can be used to obtain substantial amounts of bioactive ingredients for use as potential pharmacological and nutraceuticals agents.

5.
Artigo em Inglês | MEDLINE | ID: mdl-29725354

RESUMO

Celtis choseniana is the traditional plant used at Korea as a herbal medicine to ameliorate inflammatory responses. Although Celtis choseniana has been traditionally used as a herbal medicine at Korea, no systemic research has been conducted on its anti-inflammatory activity. Therefore, the present study explored an anti-inflammatory effect and its underlying molecular mechanism using Celtis choseniana methanol extract (Cc-ME) in macrophage-mediated inflammatory responses. In vitro anti-inflammatory activity of Cc-ME was evaluated using RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS), pam3CSK4 (Pam3), or poly(I:C). In vivo anti-inflammatory activity of Cc-ME was investigated using acute inflammatory disease mouse models, such as LPS-induced peritonitis and HCl/EtOH-induced gastritis. The molecular mechanism of Cc-ME-mediated anti-inflammatory activity was examined by Western blot analysis and immunoprecipitation using whole cell and nuclear fraction prepared from the LPS-stimulated RAW264.7 cells and HEK293 cells. Cc-ME inhibited NO production and mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor-alpha (TNF-α) in the RAW264.7 cells and peritoneal macrophages induced by LPS, pam3, or poly(I:C) without cytotoxicity. High-performance liquid chromatography (HPLC) analysis showed that Cc-ME contained anti-inflammatory flavonoids quercetin, luteolin, and kaempferol. Among those, the content of luteolin, which showed an inhibitory effect on NO production, was highest. Cc-ME suppressed the NF-κB signaling pathway by targeting Src and interrupting molecular interactions between Src and p85, its downstream kinase. Moreover, Cc-ME ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models. Therefore, these results suggest that Cc-ME exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory diseases. This anti-inflammatory activity of Cc-ME was dominantly mediated by targeting Src in NF-κB signaling pathway during macrophage-mediated inflammatory responses.

6.
Am J Chin Med ; 46(2): 435-452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29463104

RESUMO

Momordica charantia known as bitter melon is a representative medicinal plant reported to exhibit numerous pharmacological activities such as antibacterial, antidiabetic, anti-inflammatory, anti-oxidant, antitumor, and hypoglycemic actions. Although this plant has high ethnopharmacological value for treating inflammatory diseases, the molecular mechanisms by which it inhibits the inflammatory response are not fully understood. In this study, we aim to identify the anti-inflammatory mechanism of this plant. To this end, we studied the effects of its methanol extract (Mc-ME) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Specifically, we evaluated nitric oxide (NO) production, mRNA expression of inflammatory genes, luciferase reporter gene activity, and putative molecular targets. Mc-ME blocked NO production in a dose-dependent manner in RAW264.7 cells; importantly, no cytotoxicity was observed. Moreover, the mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were decreased by Mc-ME treatment in a dose-dependent manner. Luciferase assays and nuclear lysate immunoblotting analyses strongly indicated that Mc-ME decreases the levels of p65 [a nuclear factor (NF)-[Formula: see text]B subunit] and c-Fos [an activator protein (AP)-1 subunit]. Whole lysate immunoblotting assays, luciferase assays, and overexpression experiments suggested that transforming growth factor [Formula: see text]-activated kinase 1 (TAK1) is targeted by Mc-ME, thereby suppressing NF-[Formula: see text]B and AP-1 activity via downregulation of extracellular signal-regulated kinases (ERKs) and AKT. These results strongly suggest that Mc-ME exerts its anti-inflammatory activity by reducing the action of TAK1, which also affects the activation of NF-[Formula: see text]B and AP-1.


Assuntos
Anti-Inflamatórios , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/metabolismo , Momordica charantia/química , Extratos Vegetais/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Metanol , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo , Fator de Transcrição AP-1/metabolismo
7.
Folia Microbiol (Praha) ; 63(1): 13-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28497337

RESUMO

Calmodulin (CaM) is a primary Ca2+ receptor and plays a pivotal role in a variety of cellular responses in eukaryotes. Even though a large number of CaM-binding proteins are well known in yeast, plants, and animals, little is known regarding CaM-targeted proteins in filamentous fungi. To identify CaM-binding proteins in filamentous fungi, we used a proteomics method coupled with co-immunoprecipitation (CoIP) and MALDI-TOF/TOF mass spectrometry (MS) in Beauveria bassiana. Through this method, we identified ten CaM-binding proteins in B. bassiana. One of the CaM-targeted proteins was the heat shock protein 70 (BbHSP70) in B. bassiana. Our biochemical study showed that ATP inhibits the molecular interaction between BbHSP70 and CaM, suggesting a regulatory mechanism between CaM and ATP for regulating BbHSP70.


Assuntos
Beauveria/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas Fúngicas/metabolismo , Insetos/microbiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Beauveria/química , Beauveria/genética , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/química , Proteínas de Ligação a Calmodulina/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ligação Proteica , Proteômica , Alinhamento de Sequência , Espectrometria de Massas em Tandem
8.
Artigo em Inglês | MEDLINE | ID: mdl-28761499

RESUMO

Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE) and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA) cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3ß (p-GSK3ß) and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3ß-related caspase-3-dependent apoptosis.

9.
Pharm Biol ; 55(1): 2074-2082, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28832235

RESUMO

CONTEXT: Torilidis fructus, fruits of Torilis japonica Decadolle (Umbelliferae), is a medicinal herb traditionally used as a pesticide, an astrictive, or a medicine for various inflammatory diseases. OBJECTIVES: Due to the lack of pharmacological studies on this herbal medicine, we explored the inhibitory activity of torilidis fructus on the macrophage-mediated inflammatory response using its ethanol extract (Tf-EE). MATERIAL AND METHODS: The Griess assay and prostaglandin (PGE2) ELISA assay were conducted with Tf-EE (0-75 µg/mL) and LPS (1 µg/mL) treated RAW264.7 cells in cultured media. Tf-EE pretreated RAW264.7 cells were incubated with LPS for 6 h and semi-quantitative PCR was performed. Reporter gene assays, overexpression of target enzymes and immunoblotting were performed on macrophages to determine the molecular targets of Tf-EE. RESULTS: Tf-EE markedly suppressed the inflammatory response of macrophages, such as lipopolysaccharide (LPS)-induced nitric oxide (NO) and PGE2 production with IC50 values of 35.66 and 62.47 µg/mL, respectively. It was also found that Tf-EE reduced the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 by 80%. Nuclear translocation and activation of nuclear factor (NF)-κB (p65 and p50) were declined by 60% and 30% respectively, and their regulatory events including the phosphorylation of AKT, IκBα, Src, and the formation of complexes between Src and p-p85 were also recognized to be diminished. CONCLUSIONS: The signalling events managed by Src and p85 complex seemed to be critically involved in Tf-EE-mediated anti-inflammatory response. This might suggest that Tf-EE exhibited anti-inflammatory effects through Src-targeted inhibition of NF-κB.


Assuntos
Anti-Inflamatórios/farmacologia , Apiaceae , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Relação Dose-Resposta a Droga , Etanol/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/isolamento & purificação , Gravidez , Inibidores de Proteínas Quinases/isolamento & purificação , Células RAW 264.7
10.
Artigo em Inglês | MEDLINE | ID: mdl-28811826

RESUMO

Piper attenuatum is used as a traditional medicinal plant in India. One of the substances in P. attenuatum has been suggested to have anti-inflammatory effects. However, there is insufficient research about the anti-inflammatory mechanisms of action of P. attenuatum. The effects of P. attenuatum methanol extract (Pa-ME) on the production of inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2), the expression of proinflammatory genes, the translocation level of transcription factors, and intracellular signaling activities were investigated using macrophages. Pa-ME suppressed the production of NO and PGE2 in lipopolysaccharide- (LPS-), pam3CSK4-, and poly(I:C)-stimulated RAW264.7 cells without displaying cytotoxicity. The mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2) were decreased by Pa-ME. P-ME reduced the translocation of p50/NF-κB and AP-1 (c-Jun and c-Fos), as well as the activity of their upstream enzymes Src, Syk, and TAK1. Immunoprecipitation analysis showed failure of binding between their substrates, phospho- (p-) p85 and p-MKK3/6. p-p85 and p-MKK3/6, which were induced by overexpression of Src, Syk, and TAK1, were also reduced by Pa-ME. Therefore, these results suggest that Pa-ME exerts its anti-inflammatory effects by targeting Src and Syk in the NF-κB signaling pathway and TAK1 in the AP-1 signaling pathway.

11.
Environ Microbiol Rep ; 9(5): 612-617, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28556625

RESUMO

Methionine synthase (MetE, EC 2.1.1.14) catalyses the final step in the methionine biosynthetic pathway. Methionine biosynthesis plays a major role in protein biogenesis and is the source of S-adenosyl methionine (SAM), the universal donor of methyl groups. In this study, we demonstrated that BbMetE acts as a typical MetE enzyme in the entomopathogenic fungus Beauveria bassiana. In addition, we found that BbMetE binds to calmodulin (CaM) in vitro and in vivo. The functional role of CaM binding to BbMetE was to negatively regulate BbMetE activity in B. bassiana. Our proton-nuclear magnetic resonance data revealed that CaM inhibitor W-7 increases methionine content in B. bassiana, suggesting that CaM negatively regulates the BbMetE activity. Environmental stress stimuli such as salt, H2 O2 and heat suppressed BbMetE activity in B. bassiana. W-7 reversed this effect, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbMetE plays an important role in methionine biosynthesis, which is mediated by environmental stress stimuli via the CaM signalling pathway.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Beauveria/fisiologia , Calmodulina/metabolismo , Meio Ambiente , Estresse Fisiológico , Calmodulina/antagonistas & inibidores , Ativação Enzimática , Metionina/metabolismo , Ligação Proteica , Transdução de Sinais , Sulfonamidas/farmacologia
12.
Environ Microbiol ; 18(11): 4136-4143, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27449895

RESUMO

Ketoisovalerate reductase (KIVR, E.C. 1.2.7.7) mediates the specific reduction of 2-ketoisovalerate (2-Kiv) to d-hydroxyisovalerate (d-Hiv), a precursor for beauvericin biosynthesis. Beauvericin, a famous mycotoxin produced by many fungi, is a cyclooligomer depsipeptide, which has insecticidal, antimicrobial, antiviral, and cytotoxic activities. In this report, we demonstrated that Beauveria bassiana 2-ketoisovalerate reductase (BbKIVR) acts as a typical KIVR enzyme in the entomopathogenic fungus B. bassiana. In addition, we found that BbKIVR interacts with calmodulin (CaM) in vitro and in vivo. The functional role of CaM-binding to BbKIVR was to negatively regulate the BbKIVR activity in B. bassiana. Environmental stimuli such as light and salt stress suppressed BbKIVR activity in B. bassiana. Interestingly, this negative effect of BbKIVR activity by light and salt stress was recovered by CaM inhibitors, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbKIVR plays an important role in the beauvericin biosynthetic pathway mediated by environmental stimuli such as light and salt stress via the CaM signaling pathway.


Assuntos
Oxirredutases do Álcool/metabolismo , Beauveria/metabolismo , Vias Biossintéticas , Calmodulina/metabolismo , Depsipeptídeos/biossíntese , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo , Oxirredutases do Álcool/genética , Beauveria/enzimologia , Beauveria/genética , Calmodulina/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hemiterpenos , Cetoácidos/metabolismo , Ligação Proteica , Transdução de Sinais
13.
J Ethnopharmacol ; 188: 167-76, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27178629

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Seed of Torreya nucifera (L.) Siebold & Zucc is used to treat several diseases in Asia. Reports document that T. nucifera has anti-cancer, anti-inflammatory, anti-oxidative activities. In spite of numerous findings on its pharmacological effects, the understanding of the molecular inhibitory mechanisms of the plant remains to be studied. Therefore, we aimed to explore in vitro anti-inflammatory mechanisms of ethyl acetate fraction (Tn-EE-BF) prepared from the seed of T. nucifera in LPS-stimulated macrophage inflammatory responses. MATERIALS AND METHODS: For this purpose, we measured nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated macrophages. Additionally, using RT-PCR, luciferase reporter gene assay, immunoblotting analysis, and kinase assay, the levels of inflammatory genes, transcription factors, and inflammatory signal-regulatory proteins were investigated. Finally, the constituent of Tn-EE-BF was identified using HPLC. RESULTS: Tn-EE-BF inhibits NO and PGE2 production and also blocks mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in a dose dependent manner. Tn-EE-BF reduces nuclear levels of the transcriptional factors NF-κB (p65) and AP-1 (c-Jun and FRA-1). Surprisingly, we found that Tn-EE-BF inhibits phosphorylation levels of Src and Syk in the NF-κB pathway, as well as, IRAK1 at the protein level, part of the AP-1 pathway. By kinase assay, we confirmed that Src, Syk, and IRAK1 are suppressed directly. HPLC analysis indicates that arctigenin, amentoflavone, and quercetin may be active components with anti-inflammatory activities. CONCLUSION: Tn-EE-BF exhibits anti-inflammatory activities by direct inhibition of Src/Syk/NF-κB and IRAK1/AP-1.


Assuntos
Anti-Inflamatórios/farmacologia , Butanóis/química , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Solventes/química , Quinase Syk/metabolismo , Taxaceae/química , Quinases da Família src/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/enzimologia , Camundongos , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição RelA/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-25918546

RESUMO

The Cordyceps species have been widely used for treating various cancer diseases. Although the Cordyceps species have been widely known as an alternative anticancer remedy, which compounds are responsible for their anticancer activity is not fully understood. In this study, therefore, we examined the anticancer activity of 5 isolated compounds derived from the butanol fraction (Cb-BF) of Cordyceps bassiana. For this purpose, several cancer cell lines such as C6 glioma, MDA-MB-231, and A549 cells were employed and details of anticancer mechanism were further investigated. Of 5 compounds isolated by activity-guided fractionation from BF of Cb-EE, KTH-13, and 4-isopropyl-2,6-bis(1-phenylethyl)phenol, Cb-BF was found to be the most potent antiproliferative inhibitor of C6 glioma and MDA-MB-231 cell growth. KTH-13 treatment increased DNA laddering, upregulated the level of Annexin V positive cells, and altered morphological changes of C6 glioma and MDA-MB-231 cells. In addition, KTH-13 increased the levels of caspase 3, caspase 7, and caspase 9 cleaved forms as well as the protein level of Bax but not Bcl-2. It was also found that the phosphorylation of AKT and p85/PI3K was also clearly reduced by KTH-13 exposure. Therefore, our results suggest KTH-13 can act as a potent antiproliferative and apoptosis-inducing component from Cordyceps bassiana, contributing to the anticancer activity of this mushroom.

15.
J Ethnopharmacol ; 168: 217-28, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839115

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus acidus (L.) Skeels (Phyllanthaceae) has traditionally been used to treat gastric trouble, rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Despite this widespread use, the pharmacological activities of this plant and their molecular mechanisms are poorly understood. Therefore, we evaluated the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Pa-ME) and validated its pharmacological targets. MATERIALS AND METHODS: Lipopolysaccharide (LPS)-treated macrophages, an HCl/EtOH-induced gastritis model, and an acetic acid-injected capillary permeability mouse model were employed to evaluate the anti-inflammatory activity of Pa-ME. Potentially active anti-inflammatory components of this extract were identified by HPLC. The molecular mechanisms of the anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. RESULTS: Pa-ME suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and prevented morphological changes in LPS-treated RAW264.7 cells. Moreover, both HCl/EtOH-induced gastric damage and acetic acid-triggered vascular permeability were restored by orally administered Pa-ME. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signalling events upstream of NF-κB translocation, such as phosphorylation of Src and Syk and formation of Src/Syk signalling complexes, were also inhibited by Pa-ME. The enzymatic activities of Src and Syk were also suppressed by Pa-ME. Moreover, Src-induced and Syk-induced luciferase activity and p85/Akt phosphorylation were also inhibited by Pa-ME. Of the identified flavonoids, kaempferol and quercetin were revealed as partially active anti-inflammatory components in Pa-ME. CONCLUSION: Pa-ME exerts anti-inflammatory activity in vitro and in vivo by suppressing Src, Syk, and their downstream transcription factor, NF-κB.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Phyllanthus , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ácido Acético , Animais , Permeabilidade Capilar/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Etanol , Gastrite/induzido quimicamente , Células HEK293 , Humanos , Ácido Clorídrico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Lipopolissacarídeos , Metanol/química , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Solventes/química , Quinase Syk , Células U937 , Quinases da Família src/antagonistas & inibidores
16.
Phytother Res ; 29(3): 381-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25414115

RESUMO

Gouania leptostachya DC. var. tonkinensis Pitard. Rhamnaceae is a traditional medicinal plant used in Thailand for treating various inflammatory symptoms. However, no systematic studies have been performed concerning the anti-inflammatory effects or molecular mechanisms of this plant. The immunopharmacological activities of a methanol extract from the leaves and twigs of G. leptostachya (Gl-ME) were elucidated based on the gastritis symptoms of mice treated with HCl/EtOH and the inflammatory responses, such as nitric oxide (NO) release and prostaglandin E2 (PGE2) production, from RAW264.7 cells and peritoneal macrophages. Moreover, inhibitory target molecules were also assessed. Gl-ME dose-dependently diminished the secretion of NO and PGE2 from LPS-stimulated RAW264.7 cells and peritoneal macrophages. The gastritis lesions of HCl/EtOH-treated mice were also attenuated after Gl-ME treatment. The extract (50 and 300 µg/mL) clearly reduced mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, nuclear translocation of p65/nuclear factor (NF)-κB, phosphorylation of p65-activating upstream enzymes, such as protein kinase B (AKT), inhibitor of κBα kinase (IKK), and inhibitor of κB (IκBα), and the enzymatic activity of Src. By HPLC analysis, one of the major components in the extract was revealed as resveratrol with NO and Src inhibitory activities. Moreover, this compound suppressed NO production and HCl/EtOH-induced gastric symptoms. Therefore, these results suggest that Gl-ME might be useful as an herbal anti-inflammatory medicine through the inhibition of Src and NF-κB activation pathways. The efficacy data of G. leptostachya also implies that this plant could be further tested to see whether it can be developed as potential anti-inflammatory preparation.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhamnaceae/química , Estilbenos/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Gastrite/tratamento farmacológico , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol , Tailândia
17.
J Ethnopharmacol ; 159: 9-16, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25446596

RESUMO

ETHNOPHARMACOLOGIC RELEVANCE: Persicaria chinensis L. (Polygonaceae) [also synonym as Polygonum chimnense L.] has been used as Chinese traditional medicine to treat ulcer, eczema, stomach ache, and various inflammatory skin diseases. Due to no molecular pharmacological evidence of this anti-inflammatory herbal plant, we investigated the inhibitory mechanisms and target proteins contributing to the anti-inflammatory responses of the plant by using its methanolic extract (Pc-ME). MATERIALS AND METHODS: We used lipopolysaccharide (LPS)-treated macrophages and a murine HCl/EtOH-induced gastritis model to evaluate the anti-inflammatory activity of Pc-ME. HPLC analysis was employed to identify potential active components of this extract. Molecular approaches including kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes were used to confirm target enzymes. RESULTS: Pc-ME inhibited LPS-induced nitric oxide and prostaglandin E2 release by RAW264.7 macrophages and ameliorated HCl/EtOH-induced gastric ulcers in mice. The nuclear translocation of NF-κB (p65 and p50) was suppressed by Pc-ME. Phosphorylation of Src and Syk, their kinase activities, and formation of the signaling complex of these proteins were repressed by Pc-ME. Phosphorylation of p85 and Akt induced by Src or Syk overexpression was blocked by Pc-ME. In the mouse gastritis model, orally administered Pc-ME suppressed the increased phosphorylation of IκBα, Αkt, Src, and Syk. Caffeic acid, kaempferol, and quercetin, identified as major anti-inflammatory components of Pc-ME by HPLC, displayed strong nitric oxide inhibitory activity in LPS-treated macrophages. CONCLUSION: Pc-ME might play a pivotal ethnopharmacologic role as an anti-inflammatory herbal medicine by targeting Syk and Src kinases and their downstream transcription factor NF-κB.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Polygonum , Inibidores de Proteínas Quinases/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Etanol , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Células HEK293 , Humanos , Ácido Clorídrico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos , Macrófagos , Masculino , Metanol/química , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fitoterapia , Extratos Vegetais/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Solventes/química , Quinase Syk , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-25132860

RESUMO

The inhibitory activities of the Cordyceps pruinosa butanol fraction (Cp-BF) were investigated by determining inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells and by evaluating HCl/ethanol (EtOH)-triggered gastric ulcers in mice. The molecular mechanisms of the inhibitory effects of Cp-BF were investigated by identifying target enzymes using biochemical and molecular biological approaches. Cp-BF strongly inhibited the production of NO and TNF-α, release of reactive oxygen species (ROS), phagocytic uptake of FITC-dextran, and mRNA expression levels of interleukin (IL)-6, inducible NO synthase (iNOS), and tumour necrosis factor-alpha (TNF)-α in activated RAW264.7 cells. Cp-BF also strongly downregulated the NF-κB pathway by suppressing IKKß according to luciferase reporter assays and immunoblot analysis. Furthermore, Cp-BF blocked both increased levels of NF-κB-mediated luciferase activities and phosphorylation of p65/p50 observed by IKKß overexpression. Finally, orally administered Cp-BF was found to attenuate gastric ulcer and block the phosphorylation of IκBα induced by HCl/EtOH. Therefore, these results suggest that the anti-inflammatory activity of Cp-BF may be mediated by suppression of IKKα and its downstream NF-κB activation. Since our group has established the mass cultivation conditions by developing culture conditions for Cordyceps pruinosa, the information presented in this study may be useful for developing new anti-inflammatory agents.

19.
J Ethnopharmacol ; 152(3): 487-96, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24503036

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia asiatica Nakai (Compositae) is a representative herbal plant used to treat infection and inflammatory diseases. Although Artemisia asiatica is reported to have immunopharmacological activities, the mechanisms of these activities and the effectiveness of Artemisia asiatica preparations in use are not known. MATERIALS AND METHODS: To evaluate the anti-inflammatory activities of Artemisia asiatica ethanol extract (Aa-EE), we assayed nitric oxide (NO), tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2) in macrophages and measured the extent of tissue injury in a model of gastric ulcer induced in mice by treatment with HCl in EtOH. Putative enzymatic mediators of Aa-EE activities were identified by nuclear fractionation, reporter gene assay, immunoprecipitation, immunoblotting, and kinase assay. Active compound in Aa-EE was identified using HPLC. RESULTS: Treatment of RAW264.7 cells and peritoneal macrophages with Aa-EE suppressed the production of NO, PGE2, and TNF-α in response to lipopolysaccharide (LPS) and induced heme oxygenase-1 expression. The Aa-EE also ameliorated symptoms of gastric ulcer in HCl/EtOH-treated mice. These effects were associated with the inhibition of nuclear translocation of nuclear factor (NF)-κB and activator protein (AP)-1, implying that the anti-inflammatory action of the Aa-EE occurred through transcriptional inhibition. The upstream regulatory signals Syk and Src for translocation of NF-κB and TRAF6 for AP-1 were identified as targets of this effect. Analysis of Aa-EE by HPLC revealed the presence of luteolin, known to inhibit NO and PGE2 activity. CONCLUSION: The anti-inflammatory activities attributed to Artemisia asiatica Nakai in traditional medicine may be mediated by luteolin through inhibition of Src/Syk/NF-κB and TRAF6/JNK/AP-1 signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Artemisia/química , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Dinoprostona/metabolismo , Modelos Animais de Doenças , Etanol/química , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Medicina Tradicional , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
J Ethnopharmacol ; 151(2): 960-9, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24342777

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cerbera manghas L. (Apocynaceae), a semi-mangrove medicinal plant distributed throughout tropical and subtropical countries, is traditionally known to possess analgesic, anti-inflammatory, anti-convulsant, cardiotonic, and hypotensive activity. In vitro and in vivo anti-inflammatory activities of a methanol extract of the leaves of Cerbera manghas and the underlying molecular mechanisms were investigated to validate the ethnopharmacological use of this plant. MATERIALS AND METHODS: The effect of Cerbera manghas methanol extract (Cm-ME) on the production of inflammatory mediators and the induction of HCl/EtOH-treated gastritis was explored using macrophages, HEK293 cells, and ICR mice. The molecular targets of this extract and potential active components in Cm-ME were also investigated. RESULTS: Cm-ME inhibited the production of nitric oxide (NO) in lipopolysaccharide (LPS)-treated RAW264.7 cells and peritoneal macrophages in a dose-dependent manner. This extract also suppressed the expression of NO synthase (iNOS) and cyclooxygenase (COX)-2. NF-κB-mediated enhancement of luciferase activity, nuclear translocation of p50 and p65, and phosphorylation of IκBα were markedly reduced by Cm-ME treatment. Direct enzyme assays, reporter gene assays, and immunoprecipitation analysis of kinases revealed Syk and Src as immunopharmacological targets of Cm-ME. Moreover, this extract strongly ameliorated the gastric symptoms induced by HCl/EtOH treatment of mice. Finally, HPLC analysis and pharmacological tests identified kaempferol as an active component of the extract with Src/Syk inhibitory activities. CONCLUSION: Inhibition of Syk/Src and the NF-κB pathway by kaempferol could play a key role in the anti-inflammatory pharmacological action of Cerbera manghas.


Assuntos
Anti-Inflamatórios/farmacologia , Apocynaceae , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Extratos Vegetais/farmacologia , Proteínas Tirosina Quinases/metabolismo , Quinases da Família src/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Apocynaceae/química , Linhagem Celular , Células Cultivadas , Ciclo-Oxigenase 2/genética , Etanol , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Células HEK293 , Humanos , Ácido Clorídrico , Quempferóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metanol/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Extratos Vegetais/uso terapêutico , RNA Mensageiro/metabolismo , Solventes/química , Quinase Syk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...