Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Mater ; : e2314374, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490809

RESUMO

Crack is found on the soil when severe drought comes, which inspires the idea to rationalize patterning applications using dried deoxyribonucleic acid (DNA) film. DNA is one of the massively produced biomaterials in nature, showing the lyotropic liquid crystal (LC) phase in highly concentrated conditions. DNA nanostructures in the hydrated condition can be orientation controlled, which can be extended to make dryinginduced cracks. The controlled crack generation in oriented DNA films by inducing mechanical fracture through organic solvent-induced dehydration (OSID) using tetrahydrofuran (THF) is explored. The corresponding simulations show a strong correlation between the long axis of DNA due to the shrinkage during the dehydration and in the direction of crack propagation. The cracks are controlled by simple brushing and a 3D printing method. This facile way of aligning cracks will be used in potential patterning applications.

3.
Mater Horiz ; 11(8): 1843-1866, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38375871

RESUMO

Evaporation-induced self-assembly (EISA) is a process that has gained significant attention in recent years due to its fundamental science and potential applications in materials science and nanotechnology. This technique involves controlled drying of a solution or dispersion of materials, forming structures with specific shapes and sizes. In particular, liquid crystal (LC) biopolymers have emerged as promising candidates for EISA due to their highly ordered structures and biocompatible properties after deposition. This review provides an overview of recent progress in the EISA of LC biopolymers, including DNA, nanocellulose, viruses, and other biopolymers. The underlying self-assembly mechanisms, the effects of different processing conditions, and the potential applications of the resulting structures are discussed.

4.
Soft Matter ; 20(9): 2040-2051, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38343290

RESUMO

Toric focal conic domains (TFCDs) in smectic liquid crystals exhibit distinct topological characteristics, featuring torus-shaped molecular alignment patterns with rotational symmetry around a central core. TFCDs have attracted much interest due to their unique topological structures and properties, enabling not only fundamental studies but also potential applications in liquid crystal (LC)-based devices. Here, we investigated the precise spatial control of the arrangement of TFCDs using micropatterns and sublimation of TFCDs to estimate the energy states of the torus-like structures. Through simulations, we observed that the arrangement of TFCDs strongly depends on the shape of the topographies of underlying substrates. To accurately estimate the energetic effects of non-zero eccentricity and evaluate their thermodynamic stability, we propose a geometric model. Our findings provide valuable insights into the behavior of smectic LCs, offering opportunities for developing novel LC-based devices with precise control over their topological properties.

5.
ACS Appl Mater Interfaces ; 16(8): 11125-11133, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373224

RESUMO

Liquid crystals (LCs) have been adopted to induce tunable physical properties that dynamically originated from their unique intrinsic properties responding to external stimuli, such as surface anchoring condition and applied electric field, which enables them to be the template for aligning functional guest materials. We fabricate the fiber array from the electrically modulated (in-plain) nematic LC template using the chemical vapor polymerization (CVP) method. Under an electric field, an induced defect structure with a winding number of -1/2 contains a periodic zigzag disclination line. It is known that LC defect structures can trap the guest materials, such as particles and chemicals. However, the resulting fibers grow along the LC directors, not trapped in the defects. To show the versatility of our platform, nanofibers are fabricated on patterned electrodes representing the alphabets 'CVP.' In addition, the semifluorinated moieties are added to fibers to provide a hydrophobic surface. The resultant orientation-controlled fibers will be used in controllable smart surfaces that can be used in sensors, electronics, photonics, and biomimetic surfaces.

6.
Small ; 20(18): e2309469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38174621

RESUMO

Property optimization through orientation control of metal-organic framework (MOF) crystals that exhibit anisotropic crystal structures continues to garner tremendous interest. Herein, an electric field is utilized to post-synthetically control the orientation of conductive layered Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) crystals dispersed in an electronically insulating poly(ethylene glycol) diacrylate (PEGDA) oligomer matrix. Optical and electrical measurements are performed to investigate the impact of the electric field on the alignment of Cu3(HHTP)2 crystals and the formation of aggregated microstructures, which leads to an ≈5000-fold increase in the conductivity of the composite. Notably, the composite thin-films containing aligned Cu3(HHTP)2 crystals exhibit significant conductivity of ≈10-3 S cm-1 despite the low concentration (≈1 wt.%) of conductive Cu3(HHTP)2. The use of an electric field to align Cu3(HHTP)2 crystals can rapidly generate various desired patterns that exhibit on-demand tunable collective charge transport anisotropy. The findings provide valuable insights toward the manipulation and utilization of conductive MOFs with anisotropic crystal structures for various applications such as adhesive electrical interconnects and microelectronics.

7.
Adv Mater ; 36(6): e2307388, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991422

RESUMO

Developing inorganic-organic composite polymers necessitates a new strategy for effectively controlling shape and optical properties while accommodating guest materials, as conventional polymers primarily act as  carriers that transport inorganic substances. Here, a universal approach is introduced utilizing mesoporous liquid crystal polymer particles (MLPs) to fabricate inorganic-organic composites. By leveraging the liquid crystal phase, morphology and optical properties are precisely controlled through the molecular-level arrangement of the host, here monomers. The controlled host material allows the synthesis of inorganic particles within the matrix or accommodation of presynthesized nano-inorganic particles, all while preserving the intrinsic properties of the host material. This composite material surpasses the functional capabilities of the polymer alone by sequentially integrating one or more inorganic materials, allowing for the incorporation of multiple functionalities within a single polymer particle. Furthermore, this approach effectively mitigates the drawbacks associated with guest materials resulting in a substantial enhancement of composite performance. The presented approach is anticipated to hold immense potential for various applications in optoelectronics, catalysis, and biosensing, addressing the evolving demands of the society.

8.
Nat Commun ; 14(1): 8096, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065944

RESUMO

Cellulose nanocrystals (CNCs) are intriguing as a matrix for plasmonic metasurfaces made of gold nanorods (GNRs) because of their distinctive properties, including renewability, biodegradability, non-toxicity, and low cost. Nevertheless, it is very difficult to precisely regulate the positioning and orientation of CNCs on the substrate in a consistent pattern. In this study, CNCs and GNRs, which exhibit tunable optical and anti-icing capabilities, are employed to manufacture a uniform plasmonic metasurface using a drop-casting technique. Two physical phenomena-(i) spontaneous and rapid self-dewetting and (ii) evaporation-induced self-assembly-are used to accomplish this. Additionally, we improve the CNC-GNR ink composition and determine the crucial coating parameters necessary to balance the two physical mechanisms in order to produce thin films without coffee rings. The final homogeneous CNC-GNR film has consistent annular ring patterns with plasmonic quadrant hues that are properly aligned, which enhances plasmonic photothermal effects. The CNC-GNR multi-array platform offers above-zero temperatures on a substrate that is subcooled below the freezing point. The current study presents a physicochemical approach for functional nanomaterial-based CNC control.

9.
ACS Nano ; 17(22): 22778-22787, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37947399

RESUMO

DNA is an anisotropic, water-attracting, and biocompatible material, an ideal building block for hydrogel. The alignment of the anisotropic DNA chains is essential to maximize hydrogel properties, which has been little explored. Here, we present a method to fabricate the anisotropic DNA hydrogel that allows precise control for the polymerization process of photoreactive cationic monomers. Scanning ultraviolet light enables the uniaxial alignment of DNA chains through the polymerization-induced diffusive mass flow using a concentration gradient. While studying anisotropic mechanical properties and orientation recovery according to the DNA chain alignment direction, we demonstrate the potential of directionally controlled DNA hydrogels as smart materials.


Assuntos
DNA , Hidrogéis , Hidrogéis/farmacologia , Materiais Biocompatíveis , Anisotropia
10.
Artigo em Inglês | MEDLINE | ID: mdl-37910785

RESUMO

Recent years have shown the need for trustworthy, unclonable, and durable tokens as proof of authenticity for a large variety of products to combat the economic cost of counterfeits. An excellent solution is physical unclonable functions (PUFs), which are intrinsically random objects that cannot be recreated, even if illegitimate manufacturers have access to the same methods. We propose a robust and simple way to make pixelated PUFs through the deposition of a random mixture of fluorescent colloids in a predetermined lattice using capillarity-assisted particle assembly. As the encoding capacity scales exponentially with the number of deposited particles, we can easily achieve encoding capacities above 10700 for sub millimeter scale samples, where the pixelated nature of the PUFs allows for easy and trustworthy readout. Our method allows for the PUFs to be transferred to, and embedded in, a range of transparent materials to protect them from environmental challenges, leading to improved stability and robustness and allowing their implementation for a large number of different applications.

11.
Nano Lett ; 23(16): 7615-7622, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37527024

RESUMO

Metal-organic frameworks (MOFs) represent crystalline materials constructed from combinations of metal and organic units to often yield anisotropic porous structures and physical properties. Postsynthetic methods to align the MOF crystals in bulk remain scarce yet tremendously important to fully utilize their structure-driven intrinsic properties. Herein, we present an unprecedented composite of liquid crystals (LCs) and MOFs and demonstrate the use of nematic LCs to dynamically control the orientation of MOF crystals with exceptional order parameters (as high as 0.965). Unique patterns formed through a facile multidirectional alignment of MOF crystals exhibit polarized fluorescence with the fluorescence intensity of a pattern dependent on the angle of a polarizer, offering potential use in various optical applications such as an optical security label. Further, the alignment mechanism indicates that the method is applicable to numerous combinations of MOFs and LCs, which include UV polymerizable LC monomers used to fabricate free-standing composite films.

12.
Macromol Rapid Commun ; : e2300303, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37464964

RESUMO

Orientation-controlled polymeric fiber is one of the most exciting research topics to rationalize the multifunctionality for various applications. In order to realize this goal, the growth of polymeric fibers should be controlled using various techniques like extrusion, molding, drawing, and self-assembly. Among the various candidates to fabricate the orientation-controlled polymeric fibers, the template-assisted assembly guided by a liquid crystal (LC) matrix is the most promising because the template can be manipulated easily with various methods like surface anchoring, rubbing, geometric confinement, and electric field. This review introduces the recent progress toward the directed growth of polymeric fibers using the LC template. Three representative LC-templated polymerization techniques to fabricate fibers include chemical or physical polymerization from the monomers mixed in LC matrix, patterned fibers formed from LC-templated reactive mesogens, and orientation-controlled nanofibers by infiltrating vaporized monomers between LC molecules. The orientation-controlled polymeric fibers will be used in electro-optical switching tools, tunable hydrophilic or hydrophobic surfaces, and control of phosphorescence, which can open a way to design, fabricate, and modulate nano- to micron-scale fibers with various functions on demand.

13.
Adv Mater ; 35(35): e2302135, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37145961

RESUMO

Controversy over artwork's authenticity is ongoing despite numerous technologies for copyright protection. Artists should build their own ways to protect the authority, but these are still open to piracy. Here, a platform is proposed for developing anticounterfeiting labels based on physical unclonable functions (PUFs), in an artist-friendly manner, brushstrokes. Deoxyribonucleic acid (DNA), which is natural, biocompatible, and eco-friendly, can be applied as a paint that shows entropy-driven buckling instability of the liquid crystal phase. Brushed and wholly dried DNA exhibits line-shaped zig-zag textures with inherent randomness as a source of the PUF, and its primary performance and reliability are systematically examined. This breakthrough enables the utilization of these drawings in a wider range of applications.


Assuntos
Cristais Líquidos , Reprodutibilidade dos Testes , Entropia , DNA
14.
J Colloid Interface Sci ; 645: 115-121, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37146375

RESUMO

HYPOTHESIS: Colloidal particles in nematic liquid crystals (LCs) are of high interest for self-assembly of soft matter systems. When two free particles approach within a uniaxially-oriented nematic LC, an elastic force is generated due to the distorted nematic director configuration around them, allowing particles to self-assemble by an attractive force. We hypothesize that if particles are immobilized, repulsive forces emerge instead, causing the deflection of the interacting defects to compensate for the energy increase. EXPERIMENTS: We fabricated tailored arrays of spherical silica microparticles via capillarity-assisted particle assembly (CAPA) to investigate the interactions of defects as a function of particle separation. By transferring the particle arrays from the CAPA templates to a glass substrate, we studied interacting boojum defect textures within thin LC films sandwiched between two substrates using polarized optical microscopy (POM). FINDINGS: We observed deflected boojum defects on arrays of fixed silica particles, confirming our hypothesis that the elastic repulsive force between the particles affects the defect orientation. The nematic director configuration is reconstructed by Landau-de Gennes q-tensor modeling, and simulated POM images are obtained by the Jones-Matrix method. Our results provide a new platform for controlling defect interactions and pave the way for future work to study topology and implement new defect based applications in LC films.

15.
Adv Mater ; 35(36): e2303077, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37148534

RESUMO

The planar spin glass pattern is widely known for its inherent randomness, resulting from the geometrical frustration. As such, developing physical unclonable functions (PUFs)-which operate with device randomness-with planar spin glass patterns is a promising candidate for an advanced security systems in the upcoming digitalized society. Despite their inherent randomness, traditional magnetic spin glass patterns pose considerable obstacles in detection, making it challenging to achieve authentication in security systems. This necessitates the development of facilely observable mimetic patterns with similar randomness to overcome these challenges. Here, a straightforward approach is introduced using a topologically protected maze pattern in the chiral liquid crystals (LCs). This maze exhibits a comparable level of randomness to magnetic spin glass and can be reliably identified through the combination of optical microscopy with machine learning-based object detection techniques. The "information" embedded in the maze can be reconstructed through thermal phase transitions of the LCs in tens of seconds. Furthermore, incorporating various elements can enhance the optical PUF, resulting in a multi-factor security medium. It is expected that this security medium, based on microscopically controlled and macroscopically uncontrolled topologically protected structures, may be utilized as a next-generation security system.

16.
ACS Appl Mater Interfaces ; 15(15): 18653-18662, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37014981

RESUMO

Using improper wound care materials may cause impaired wound healing, which can involve scar formation and infection. Herein, we propose a facile method to fabricate a cell-alignment scaffold, which can effectively enhance cell growth and migration, leading to the reproduction of cellular arrangements and restoration of tissues. The principle is scratching a diamond lapping film that gives uniaxial nanotopography on substrates. Cells are seeded to follow the geometric cue via contact guidance, resulting in highly oriented cell alignment. Remarkable biocompatibility is also demonstrated by the high cell viability on various substrates. In vivo studies in a wound healing model in mice show that the scratched film supports directed cell guidance on the nanostructure, with significantly reduced wound areas and inhibition of excessive collagen deposition. Rapid recovery of the epidermis and dermis is also shown by histological analyses, suggesting the potential application of the scratching technique as an advanced wound dressing material for effective tissue regeneration.


Assuntos
Colágeno , Cicatrização , Camundongos , Animais , Colágeno/química , Proliferação de Células , Bandagens
17.
ACS Appl Mater Interfaces ; 15(6): 8387-8392, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36740776

RESUMO

We have fabricated patterned fibers using a small-molecular-weight liquid crystal (LC) and reactive mesogens (RMs) under controlled electric fields in which defect arrays are generated depending on the electrode configuration. For this, the AC electric field with interdigitated electrodes is used to develop versatile defect structures of the LC phase. Hydrophobic LC network (LCN) fibers exhibiting porous morphologies have been made by removing the LC part after the polymerization of RM. The resulting LCN fibers show a surface tension reduction characteristic compared to the neat RM film and a sticky characteristic with the water droplet, suggesting a facile way to fabricate the hydrophobic surface that can be used in microdroplet transport.

18.
Macromol Rapid Commun ; 44(3): e2200650, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36350231

RESUMO

Shape memory polymers have great potential in the fields of soft robotics, injectable medical devices, and as essential materials for advanced electronic devices. Herein, light-triggered shape-memory thermoplastic polyurethane (TPU) is reported using azido TPU grafted by the photoswitchable azo compound. The trans-cis transitions of the azobenzene on the side chain of the TPU induce the recoiling of the main chain, leading to shaping memory behavior. Under UV irradiation, cis-azo allows the oriented main chain to recoil to release residual stress and realize light-triggered shape memory behavior. The facile method proposed here for the preparation of azo-functionalized TPU can provide viable opportunities for soft robotics and smart TPU applications.


Assuntos
Robótica , Materiais Inteligentes , Poliuretanos/química , Raios Ultravioleta
19.
Nat Commun ; 13(1): 5615, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153310

RESUMO

Controlling the orientation of two-dimensional materials is essential to optimize or tune their functional properties. In particular, aligning MXene, a two-dimensional carbide and/or nitride material, has recently received much attention due to its high conductivity and high-density surface functional group properties that can easily vary based on its arranged directions. However, erecting 2D materials vertically can be challenging, given their thinness of few nanometres. Here, vertical alignment of Ti3C2Tx MXene sheets is achieved by applying an in-plane electric field, which is directly observed using polarised optical microscopy and scanning electron microscopy. The electric field-induced vertical alignment parallel to the applied alternating-current field is demonstrated to be reversible in the absence of a field, back to a random orientation distribution. Interdigitated electrodes with uniaxially aligned MXene nanosheets are demonstrated. These can be further modulated to achieve various patterns using diversified electrode substrates. Anisotropic electrical conductivity is also observed in the uniaxially aligned MXene nanosheet film, which is quite different from the randomly oriented ones. The proposed orientation-controlling technique demonstrates potential for many applications including sensors, membranes, polarisers, and general energy applications.

20.
Angew Chem Int Ed Engl ; 61(43): e202211465, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36045485

RESUMO

Creation of new two-dimensional (2D) architectures has attracted significant attention in the field of self-assembly for structural diversity and new functionalization. Although numerous 2D polymer nanosheets have been reported, 2D nanosheets with tubular channels have been unexplored. Herein, we describe a new strategy for the fabrication of stimulus-responsive conjugated polymer 2D nanosheets with hollow cavities. Amphiphilic macrocyclic diacetylenes self-assembled in an aqueous solution in a columnar manner to afford bilayered 2D nanosheets with intrinsically tubular nanochannels. UV-induced polymerization resulted in the generation of blue-colored tubular conjugated polydiacetylene 2D nanosheets. Immobilization of gold nanoparticles, fluorescence labeling with FRET phenomenon and colorimetric DNA sensing were demonstrated with these new 2D nanosheets. In addition, the free NH2 containing polymerized 2D nanosheet was utilized for conductivity behavior and grafting on graphene oxide (GO).


Assuntos
Nanopartículas Metálicas , Polímeros Responsivos a Estímulos , Ouro , Polímeros/química , Colorimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...