Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(1): 105768, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590173

RESUMO

In this study, polyvinyl alcohol (PVA)-mixed DL-alanine (PVA/DL-alanine) polycrystals are fabricated, and their piezoelectric characteristics in the d33 mode are investigated. The d33 piezoelectric coefficients of the PVA/DL-alanine polycrystals are found to increase with an increase in the weight ratio of DL-alanine, and the PVA/DL-alanine polycrystal composed of PVA and DL-alanine in a weight ratio of 1:3 exhibits a d33 of ∼5 pC/N. The piezoelectric characteristics of the PVA/DL-alanine polycrystals are discussed in terms of the crystal structure by employing scanning electron microscopy and X-ray diffraction analyses. To confirm the piezoelectric performance of the polycrystals, the piezoelectric voltages of a piezoelectric device composed of a single layer of ZnO thin film and heterostructured devices consisting of a layer of PVA/DL-alanine polycrystal and a ZnO thin film layer are measured and compared. This study presents PVA/DL-alanine polycrystals as a potential piezoelectric material for bio-friendly piezoelectric-device applications.

2.
ACS Appl Mater Interfaces ; 13(51): 61434-61446, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34908392

RESUMO

Recent studies have focused on the development of efficient, flexible, and highly sensitive ultraviolet photodetectors (UV PDs) with various wide band-gap materials. In the present study, the application of environmentally friendly zinc-aluminum layered double hydroxide (ZnAl-CO3:LDH) is demonstrated for a high-performance, flexible UV PD. The vertically oriented ZnAl:LDH nanosheets (ZnAl:LDH Ns) are facilely synthesized by dipping the sputtered 10 wt % aluminum-doped zinc oxide thin films in deionized water at room temperature. Without passivation, the UV PDs exhibit an exceptional light-to-dark current ratio of 104 and a responsivity of ∼34.7 mA/W at a bias of 1 V. Moreover, the spectral responsivity and detectivity are enhanced to ∼148.3 mA/W and 2.5 × 1012 Jones, respectively, by passivating the ZnAl:LDH Ns with polydimethylsiloxane (PDMS), thus making the device suitable for application in UV detectors. In addition, the ambient atmosphere effect on PD performance, which elucidates the clear understanding of the PD working mechanism, is also investigated. The passivation of the Ns by PDMS also helps to enhance the mechanical robustness and long-term stability of the PD. The methodology demonstrated herein highlights the potential of the ZnAl:LDH material in realizing the next generation of flexible UV PDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...