Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Neuroimage ; 273: 120073, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037063

RESUMO

Identifying Alzheimer's disease (AD) involves a deliberate diagnostic process owing to its innate traits of irreversibility with subtle and gradual progression. These characteristics make AD biomarker identification from structural brain imaging (e.g., structural MRI) scans quite challenging. Using clinically-guided prototype learning, we propose a novel deep-learning approach through eXplainable AD Likelihood Map Estimation (XADLiME) for AD progression modeling over 3D sMRIs. Specifically, we establish a set of topologically-aware prototypes onto the clusters of latent clinical features, uncovering an AD spectrum manifold. Considering this pseudo map as an enriched reference, we employ an estimating network to approximate the AD likelihood map over a 3D sMRI scan. Additionally, we promote the explainability of such a likelihood map by revealing a comprehensible overview from clinical and morphological perspectives. During the inference, this estimated likelihood map served as a substitute for unseen sMRI scans for effectively conducting the downstream task while providing thorough explainable states.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Aprendizagem , Biomarcadores , Neuroimagem/métodos
2.
Eur Radiol ; 33(9): 5924-5932, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37012546

RESUMO

OBJECTIVES: We aimed to evaluate the effect of hepatic steatosis (HS) on liver volume and to develop a formula to estimate lean liver volume correcting the HS effect. METHODS: This retrospective study included healthy adult liver donors who underwent gadoxetic acid-enhanced MRI and proton density fat fraction (PDFF) measurement from 2015 to 2019. The degree of HS was graded at 5% PDFF intervals from grade 0 (no HS; PDFF < 5.5%). Liver volume was measured with hepatobiliary phase MRI using deep learning algorithm, and standard liver volume (SLV) was calculated as the reference lean liver volume. The association between liver volume and SLV ratio with PDFF grades was evaluated using Spearman's correlation (ρ). The effect of PDFF grades on liver volume was evaluated using the multivariable linear regression model. RESULTS: The study population included 1038 donors (mean age, 31 ± 9 years; 689 men). Mean liver volume to SLV ratio increased according to PDFF grades (ρ = 0.234, p < 0.001). The multivariable analysis indicated that SLV (ß = 1.004, p < 0.001) and PDFF grade*SLV (ß = 0.044, p < 0.001) independently affected liver volume, suggesting a 4.4% increase in liver volume per one-point increment in the PDFF grade. PDFF-adjusted lean liver volume was estimated using the formula, liver volume/[1.004 + 0.044 × PDFF grade]. The mean estimated lean liver volume to SLV ratio approximated to one for all PDFF grades, with no significant association with PDFF grades (p = 0.851). CONCLUSION: HS increases liver volume. The formula to estimate lean liver volume may be useful to adjust for the effect of HS on liver volume. KEY POINTS: • Hepatic steatosis increases liver volume. • The presented formula to estimate lean liver volume using MRI-measured proton density fat fraction and liver volume may be useful to adjust for the effect of hepatic steatosis on measured liver volume.


Assuntos
Aprendizado Profundo , Hepatopatia Gordurosa não Alcoólica , Adulto , Masculino , Humanos , Adulto Jovem , Prótons , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Estudos Retrospectivos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética
3.
IEEE Trans Neural Netw Learn Syst ; 34(2): 739-749, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34357871

RESUMO

In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer interface (BCI). Nonetheless, owing to high intra- and inter-subject variabilities, many studies on decoding EEG were designed in a subject-specific manner by using calibration samples, with no concern of its practical use, hampered by time-consuming steps and a large data requirement. To this end, recent studies adopted a transfer learning strategy, especially domain adaptation techniques. Among those, we have witnessed the potential of adversarial learning-based transfer learning in BCIs. In the meantime, it is known that adversarial learning-based domain adaptation methods are prone to negative transfer that disrupts learning generalized feature representations, applicable to diverse domains, for example, subjects or sessions in BCIs. In this article, we propose a novel framework that learns class-relevant and subject-invariant feature representations in an information-theoretic manner, without using adversarial learning. To be specific, we devise two operational components in a deep network that explicitly estimate mutual information between feature representations: 1) to decompose features in an intermediate layer into class-relevant and class-irrelevant ones and 2) to enrich class-discriminative feature representation. On two large EEG datasets, we validated the effectiveness of our proposed framework by comparing with several comparative methods in performance. Furthermore, we conducted rigorous analyses by performing an ablation study in regard to the components in our network, explaining our model's decision on input EEG signals via layer-wise relevance propagation, and visualizing the distribution of learned features via t-SNE.


Assuntos
Interfaces Cérebro-Computador , Redes Neurais de Computação , Humanos , Aprendizado de Máquina , Eletroencefalografia/métodos , Calibragem , Algoritmos
4.
IEEE Trans Pattern Anal Mach Intell ; 45(4): 4843-4857, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35947563

RESUMO

Existing studies on disease diagnostic models focus either on diagnostic model learning for performance improvement or on the visual explanation of a trained diagnostic model. We propose a novel learn-explain-reinforce (LEAR) framework that unifies diagnostic model learning, visual explanation generation (explanation unit), and trained diagnostic model reinforcement (reinforcement unit) guided by the visual explanation. For the visual explanation, we generate a counterfactual map that transforms an input sample to be identified as an intended target label. For example, a counterfactual map can localize hypothetical abnormalities within a normal brain image that may cause it to be diagnosed with Alzheimer's disease (AD). We believe that the generated counterfactual maps represent data-driven knowledge about a target task, i.e., AD diagnosis using structural MRI, which can be a vital source of information to reinforce the generalization of the trained diagnostic model. To this end, we devise an attention-based feature refinement module with the guidance of the counterfactual maps. The explanation and reinforcement units are reciprocal and can be operated iteratively. Our proposed approach was validated via qualitative and quantitative analysis on the ADNI dataset. Its comprehensibility and fidelity were demonstrated through ablation studies and comparisons with existing methods.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Algoritmos , Aprendizagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem
5.
Korean J Radiol ; 23(12): 1269-1280, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36447415

RESUMO

OBJECTIVE: This study aimed to evaluate the usefulness of quantitative indices obtained from deep learning analysis of gadoxetic acid-enhanced hepatobiliary phase (HBP) MRI and their longitudinal changes in predicting decompensation and death in patients with advanced chronic liver disease (ACLD). MATERIALS AND METHODS: We included patients who underwent baseline and 1-year follow-up MRI from a prospective cohort that underwent gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance between November 2011 and August 2012 at a tertiary medical center. Baseline liver condition was categorized as non-ACLD, compensated ACLD, and decompensated ACLD. The liver-to-spleen signal intensity ratio (LS-SIR) and liver-to-spleen volume ratio (LS-VR) were automatically measured on the HBP images using a deep learning algorithm, and their percentage changes at the 1-year follow-up (ΔLS-SIR and ΔLS-VR) were calculated. The associations of the MRI indices with hepatic decompensation and a composite endpoint of liver-related death or transplantation were evaluated using a competing risk analysis with multivariable Fine and Gray regression models, including baseline parameters alone and both baseline and follow-up parameters. RESULTS: Our study included 280 patients (153 male; mean age ± standard deviation, 57 ± 7.95 years) with non-ACLD, compensated ACLD, and decompensated ACLD in 32, 186, and 62 patients, respectively. Patients were followed for 11-117 months (median, 104 months). In patients with compensated ACLD, baseline LS-SIR (sub-distribution hazard ratio [sHR], 0.81; p = 0.034) and LS-VR (sHR, 0.71; p = 0.01) were independently associated with hepatic decompensation. The ΔLS-VR (sHR, 0.54; p = 0.002) was predictive of hepatic decompensation after adjusting for baseline variables. ΔLS-VR was an independent predictor of liver-related death or transplantation in patients with compensated ACLD (sHR, 0.46; p = 0.026) and decompensated ACLD (sHR, 0.61; p = 0.023). CONCLUSION: MRI indices automatically derived from the deep learning analysis of gadoxetic acid-enhanced HBP MRI can be used as prognostic markers in patients with ACLD.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Masculino , Estudos Prospectivos , Imageamento por Ressonância Magnética , Neoplasias Hepáticas/diagnóstico por imagem
6.
Korean J Radiol ; 23(7): 720-731, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35434977

RESUMO

OBJECTIVE: We aimed to develop and test a deep learning algorithm (DLA) for fully automated measurement of the volume and signal intensity (SI) of the liver and spleen using gadoxetic acid-enhanced hepatobiliary phase (HBP)-magnetic resonance imaging (MRI) and to evaluate the clinical utility of DLA-assisted assessment of functional liver capacity. MATERIALS AND METHODS: The DLA was developed using HBP-MRI data from 1014 patients. Using an independent test dataset (110 internal and 90 external MRI data), the segmentation performance of the DLA was measured using the Dice similarity score (DSS), and the agreement between the DLA and the ground truth for the volume and SI measurements was assessed with a Bland-Altman 95% limit of agreement (LOA). In 276 separate patients (male:female, 191:85; mean age ± standard deviation, 40 ± 15 years) who underwent hepatic resection, we evaluated the correlations between various DLA-based MRI indices, including liver volume normalized by body surface area (LVBSA), liver-to-spleen SI ratio (LSSR), MRI parameter-adjusted LSSR (aLSSR), LSSR × LVBSA, and aLSSR × LVBSA, and the indocyanine green retention rate at 15 minutes (ICG-R15), and determined the diagnostic performance of the DLA-based MRI indices to detect ICG-R15 ≥ 20%. RESULTS: In the test dataset, the mean DSS was 0.977 for liver segmentation and 0.946 for spleen segmentation. The Bland-Altman 95% LOAs were 0.08% ± 3.70% for the liver volume, 0.20% ± 7.89% for the spleen volume, -0.02% ± 1.28% for the liver SI, and -0.01% ± 1.70% for the spleen SI. Among DLA-based MRI indices, aLSSR × LVBSA showed the strongest correlation with ICG-R15 (r = -0.54, p < 0.001), with area under receiver operating characteristic curve of 0.932 (95% confidence interval, 0.895-0.959) to diagnose ICG-R15 ≥ 20%. CONCLUSION: Our DLA can accurately measure the volume and SI of the liver and spleen and may be useful for assessing functional liver capacity using gadoxetic acid-enhanced HBP-MRI.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Adulto , Meios de Contraste , Feminino , Gadolínio DTPA , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
7.
Sci Rep ; 12(1): 4587, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301366

RESUMO

Convolutional neural networks (CNNs), which can recognize structural/configuration patterns in data with different architectures, have been studied for feature extraction. However, challenges remain regarding leveraging advanced deep learning methods in BCIs. We focus on problems of small-sized training samples and interpretability of the learned parameters and leverages a semi-supervised generative and discriminative learning framework that effectively utilizes synthesized samples with real samples to discover class-discriminative features. Our framework learns the distributional characteristics of EEG signals in an embedding space using a generative model. By using artificially generated and real EEG signals, our framework finds class-discriminative spatio-temporal feature representations that help to correctly discriminate input EEG signals. It is noteworthy that the framework facilitates the exploitation of real, unlabeled samples to better uncover the underlying patterns inherent in a user's EEG signals. To validate our framework, we conducted experiments comparing our method with conventional linear models by utilizing variants of three existing CNN architectures as generator networks and measuring the performance on three public datasets. Our framework exhibited statistically significant improvements over the competing methods. We investigated the learned network via activation pattern maps and visualized generated artificial samples to empirically justify the stability and neurophysiological plausibility of our model.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Aprendizagem por Discriminação , Eletroencefalografia/métodos , Imaginação/fisiologia
8.
IEEE Trans Neural Netw Learn Syst ; 33(8): 3792-3803, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33566769

RESUMO

In this article, we focus on decomposing latent representations in generative adversarial networks or learned feature representations in deep autoencoders into semantically controllable factors in a semisupervised manner, without modifying the original trained models. Particularly, we propose factors' decomposer-entangler network (FDEN) that learns to decompose a latent representation into mutually independent factors. Given a latent representation, the proposed framework draws a set of interpretable factors, each aligned to independent factors of variations by minimizing their total correlation in an information-theoretic means. As a plug-in method, we have applied our proposed FDEN to the existing networks of adversarially learned inference and pioneer network and performed computer vision tasks of image-to-image translation in semantic ways, e.g., changing styles, while keeping the identity of a subject, and object classification in a few-shot learning scheme. We have also validated the effectiveness of the proposed method with various ablation studies in the qualitative, quantitative, and statistical examination.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Aprendizagem , Semântica
9.
Korean J Radiol ; 22(12): 1985-1995, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34564961

RESUMO

OBJECTIVE: Although the liver-to-spleen volume ratio (LSVR) based on CT reflects portal hypertension, its prognostic role in cirrhotic patients has not been proven. We evaluated the utility of LSVR, automatically measured from CT images using a deep learning algorithm, as a predictor of hepatic decompensation and transplantation-free survival in patients with hepatitis B viral (HBV)-compensated cirrhosis. MATERIALS AND METHODS: A deep learning algorithm was used to measure the LSVR in a cohort of 1027 consecutive patients (mean age, 50.5 years; 675 male and 352 female) with HBV-compensated cirrhosis who underwent liver CT (2007-2010). Associations of LSVR with hepatic decompensation and transplantation-free survival were evaluated using multivariable Cox proportional hazards and competing risk analyses, accounting for either the Child-Pugh score (CPS) or Model for End Stage Liver Disease (MELD) score and other variables. The risk of the liver-related events was estimated using Kaplan-Meier analysis and the Aalen-Johansen estimator. RESULTS: After adjustment for either CPS or MELD and other variables, LSVR was identified as a significant independent predictor of hepatic decompensation (hazard ratio for LSVR increase by 1, 0.71 and 0.68 for CPS and MELD models, respectively; p < 0.001) and transplantation-free survival (hazard ratio for LSVR increase by 1, 0.8 and 0.77, respectively; p < 0.001). Patients with an LSVR of < 2.9 (n = 381) had significantly higher 3-year risks of hepatic decompensation (16.7% vs. 2.5%, p < 0.001) and liver-related death or transplantation (10.0% vs. 1.1%, p < 0.001) than those with an LSVR ≥ 2.9 (n = 646). When patients were stratified according to CPS (Child-Pugh A vs. B-C) and MELD (< 10 vs. ≥ 10), an LSVR of < 2.9 was still associated with a higher risk of liver-related events than an LSVR of ≥ 2.9 for all Child-Pugh (p ≤ 0.045) and MELD (p ≤ 0.009) stratifications. CONCLUSION: The LSVR measured on CT can predict hepatic decompensation and transplantation-free survival in patients with HBV-compensated cirrhosis.


Assuntos
Doença Hepática Terminal , Herpesvirus Cercopitecino 1 , Feminino , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença , Baço , Tomografia Computadorizada por Raios X
10.
Radiology ; 301(2): 339-347, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34402668

RESUMO

Background Reference intervals guiding volumetric assessment of the liver and spleen have yet to be established. Purpose To establish population-based and personalized reference intervals for liver volume, spleen volume, and liver-to-spleen volume ratio (LSVR). Materials and Methods This retrospective study consecutively included healthy adult liver donors from 2001 to 2013 (reference group) and from 2014 to 2016 (healthy validation group) and patients with viral hepatitis from 2007 to 2017. Liver volume, spleen volume, and LSVR were measured with CT by using a deep learning algorithm. In the reference group, the reference intervals for the volume indexes were determined by using the population-based (ranges encompassing the central 95% of donors) and personalized (quantile regression modeling of the 2.5th and 97.5th percentiles as a function of age, sex, height, and weight) approaches. The validity of the reference intervals was evaluated in the healthy validation group and the viral hepatitis group. Results The reference and healthy validation groups had 2989 donors (mean age ± standard deviation, 30 years ± 9; 1828 men) and 472 donors (mean age, 30 years ± 9; 334 men), respectively. The viral hepatitis group had 158 patients (mean age, 48 years ± 12; 95 men). The population-based reference intervals were 824.5-1700.0 cm3 for liver volume, 81.1-322.0 cm3 for spleen volume, and 3.96-13.78 for LSVR. Formulae and a web calculator (https://i-pacs.com/calculators) were presented to calculate the personalized reference intervals. In the healthy validation group, both the population-based and personalized reference intervals were used to classify the volume indexes of 94%-96% of the donors as falling within the reference interval. In the viral hepatitis group, when compared with the population-based reference intervals, the personalized reference intervals helped identify more patients with volume indexes outside the reference interval (liver volume, 21.5% [34 of 158] vs 13.3% [21 of 158], P = .01; spleen volume, 29.1% [46 of 158] vs 22.2% [35 of 158], P = .01; LSVR, 35.4% [56 of 158] vs 26.6% [42 of 158], P < .001). Conclusion Reference intervals derived from a deep learning approach in healthy adults may enable evidence-based assessments of liver and spleen volume in clinical practice. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Ringl in this issue.


Assuntos
Hepatite Viral Humana/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Baço/diagnóstico por imagem , Baço/patologia , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Feminino , Hepatite Viral Humana/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Valores de Referência , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
11.
Eur Radiol ; 31(5): 3355-3365, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33128186

RESUMO

OBJECTIVES: Deep learning enables an automated liver and spleen volume measurements on CT. The purpose of this study was to develop an index combining liver and spleen volumes and clinical factors for detecting high-risk varices in B-viral compensated cirrhosis. METHODS: This retrospective study included 419 patients with B-viral compensated cirrhosis who underwent endoscopy and CT from 2007 to 2008 (derivation cohort, n = 239) and from 2009 to 2010 (validation cohort, n = 180). The liver and spleen volumes were measured on CT images using a deep learning algorithm. Multivariable logistic regression analysis of the derivation cohort developed an index to detect endoscopically confirmed high-risk varix. The cumulative 5-year risk of varix bleeding was evaluated with patients stratified by their index values. RESULTS: The index of spleen volume-to-platelet ratio was devised from the derivation cohort. In the validation cohort, the cutoff index value for balanced sensitivity and specificity (> 3.78) resulted in the sensitivity of 69.4% and the specificity of 78.5% for detecting high-risk varix, and the cutoff index value for high sensitivity (> 1.63) detected all high-risk varices. The index stratified all patients into the low (index value ≤ 1.63; n = 118), intermediate (n = 162), and high (index value > 3.78; n = 139) risk groups with cumulative 5-year incidences of varix bleeding of 0%, 1.0%, and 12.0%, respectively (p < .001). CONCLUSION: The spleen volume-to-platelet ratio obtained using deep learning-based CT analysis is useful to detect high-risk varices and to assess the risk of varix bleeding. KEY POINTS: • The criterion of spleen volume to platelet > 1.63 detected all high-risk varices in the validation cohort, while the absence of visible varix did not exclude all high-risk varices. • Visual varix grade ≥ 2 detected high-risk varix with a high specificity (96.5-100%). • Combining spleen volume-to-platelet ratio ≤ 1.63 and visual varix grade of 0 identified low-risk patients who had no high-risk varix and varix bleeding on 5-year follow-up.


Assuntos
Aprendizado Profundo , Varizes Esofágicas e Gástricas , Herpesvirus Cercopitecino 1 , Varizes , Varizes Esofágicas e Gástricas/diagnóstico por imagem , Varizes Esofágicas e Gástricas/patologia , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Valor Preditivo dos Testes , Estudos Retrospectivos , Baço/diagnóstico por imagem , Baço/patologia , Tomografia Computadorizada por Raios X , Varizes/patologia
12.
Korean J Radiol ; 21(8): 987-997, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32677383

RESUMO

OBJECTIVE: Measurement of the liver and spleen volumes has clinical implications. Although computed tomography (CT) volumetry is considered to be the most reliable noninvasive method for liver and spleen volume measurement, it has limited application in clinical practice due to its time-consuming segmentation process. We aimed to develop and validate a deep learning algorithm (DLA) for fully automated liver and spleen segmentation using portal venous phase CT images in various liver conditions. MATERIALS AND METHODS: A DLA for liver and spleen segmentation was trained using a development dataset of portal venous CT images from 813 patients. Performance of the DLA was evaluated in two separate test datasets: dataset-1 which included 150 CT examinations in patients with various liver conditions (i.e., healthy liver, fatty liver, chronic liver disease, cirrhosis, and post-hepatectomy) and dataset-2 which included 50 pairs of CT examinations performed at ours and other institutions. The performance of the DLA was evaluated using the dice similarity score (DSS) for segmentation and Bland-Altman 95% limits of agreement (LOA) for measurement of the volumetric indices, which was compared with that of ground truth manual segmentation. RESULTS: In test dataset-1, the DLA achieved a mean DSS of 0.973 and 0.974 for liver and spleen segmentation, respectively, with no significant difference in DSS across different liver conditions (p = 0.60 and 0.26 for the liver and spleen, respectively). For the measurement of volumetric indices, the Bland-Altman 95% LOA was -0.17 ± 3.07% for liver volume and -0.56 ± 3.78% for spleen volume. In test dataset-2, DLA performance using CT images obtained at outside institutions and our institution was comparable for liver (DSS, 0.982 vs. 0.983; p = 0.28) and spleen (DSS, 0.969 vs. 0.968; p = 0.41) segmentation. CONCLUSION: The DLA enabled highly accurate segmentation and volume measurement of the liver and spleen using portal venous phase CT images of patients with various liver conditions.


Assuntos
Aprendizado Profundo , Fígado/diagnóstico por imagem , Veia Porta/diagnóstico por imagem , Baço/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Algoritmos , Feminino , Hepatectomia , Humanos , Hepatopatias/diagnóstico , Hepatopatias/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão
13.
Neural Netw ; 115: 1-10, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30909118

RESUMO

Lung cancer is a global and dangerous disease, and its early detection is crucial for reducing the risks of mortality. In this regard, it has been of great interest in developing a computer-aided system for pulmonary nodules detection as early as possible on thoracic CT scans. In general, a nodule detection system involves two steps: (i) candidate nodule detection at a high sensitivity, which captures many false positives and (ii) false positive reduction from candidates. However, due to the high variation of nodule morphological characteristics and the possibility of mistaking them for neighboring organs, candidate nodule detection remains a challenge. In this study, we propose a novel Multi-scale Gradual Integration Convolutional Neural Network (MGI-CNN), designed with three main strategies: (1) to use multi-scale inputs with different levels of contextual information, (2) to use abstract information inherent in different input scales with gradual integration, and (3) to learn multi-stream feature integration in an end-to-end manner. To verify the efficacy of the proposed network, we conducted exhaustive experiments on the LUNA16 challenge datasets by comparing the performance of the proposed method with state-of-the-art methods in the literature. On two candidate subsets of the LUNA16 dataset, i.e., V1 and V2, our method achieved an average CPM of 0.908 (V1) and 0.942 (V2), outperforming comparable methods by a large margin. Our MGI-CNN is implemented in Python using TensorFlow and the source code is available from https://github.com/ku-milab/MGICNN.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA