Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-19686968

RESUMO

Two-phase nanocomposite heteroepitaxial films with vertical microstructures hold great promise for various (multi)functional (e.g., multiferroic) electronic device applications. With the aim of creating addressable arrays, it is necessary to form spontaneously ordered structures over large areas. However, such structures have not, so far, been demonstrated. We have recently produced remarkable spontaneously ordered phase assemblies and find that these structures form concomitantly with 2-D vertical strain control, i.e., strain in the 2 phases is controlled along the vertical interface between them rather than being influenced by the substrate. In this paper, we report on our findings in the BiFeO3 and BaTiO3 ferroelectric systems.

2.
Nat Mater ; 7(4): 314-20, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18311144

RESUMO

Two-phase, vertical nanocomposite heteroepitaxial films hold great promise for (multi)functional device applications. In order to achieve practical devices, a number of hurdles need to be overcome, including the creation of ordered structures (and their formation on a large scale), achieving different combinations of materials and control of strain coupling between the phases. Here we demonstrate major advances on all these fronts: remarkable spontaneously ordered structures were produced in newly predicted compositions, vertical strain was proven to dominate the strain state in films above 20 nm thickness and strain manipulation was demonstrated by selection of phases with the appropriate elastic moduli. The work opens up a new avenue for strain control in relatively thick films and also promises new forms of ordered nanostructures for multifunctional applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA