Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 36(10): 2720-2731, 2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34363466

RESUMO

STUDY QUESTION: Can we reconstitute physiologically relevant 3-dimensional (3D) microengineered endometrium in-vitro model? SUMMARY ANSWER: Our representative microengineered vascularised endometrium on-a-chip closely recapitulates the endometrial microenvironment that consists of three distinct layers including epithelial cells, stromal fibroblasts and endothelial cells in a 3D extracellular matrix in a spatiotemporal manner. WHAT IS KNOWN ALREADY: Organ-on-a-chip, a multi-channel 3D microfluidic cell culture system, is widely used to investigate physiologically relevant responses of organ systems. STUDY DESIGN, SIZE, DURATION: The device consists of five microchannels that are arrayed in parallel and partitioned by array of micropost. Two central channels are for 3D culture and morphogenesis of stromal fibroblast and endothelial cells. In addition, the outermost channel is for the culture of additional endometrial stromal fibroblasts that secrete biochemical cues to induce directional pro-angiogenic responses of endothelial cells. To seed endometrial epithelial cells, on Day 8, Ishikawa cells were introduced to one of the two medium channels to adhere on the gel surface. After that, the microengineered endometrium was cultured for an additional 5-6 days (total ∼ 14 days) for the purpose of each experiment. PARTICIPANTS/MATERIALS, SETTING, METHODS: Microfluidic 3D cultures were maintained in endothelial growth Medium 2 with or without oestradiol and progesterone. Some cultures additionally received exogenous pro-angiogenic factors. For the three distinct layers of microengineered endometrium-on-a-chip, the epithelium, stroma and blood vessel characteristics and drug response of each distinct layer in the microfluidic model were assessed morphologically and biochemically. The quantitative measurement of endometrial drug delivery was evaluated by the permeability coefficients. MAIN RESULTS AND THE ROLE OF CHANCE: We established microengineered vascularised endometrium-on-chip, which consists of three distinct layers: epithelium, stroma and blood vessels. Our endometrium model faithfully recapitulates in-vivo endometrial vasculo-angiogenesis and hormonal responses displaying key features of the proliferative and secretory phases of the menstrual cycle. Furthermore, the effect of the emergency contraception drug levonorgestrel was evaluated in our model demonstrating increased endometrial permeability and blood vessel regression in a dose-dependent manner. We finally provided a proof of concept of the multi-layered endometrium model for embryo implantation, which aids a better understanding of the molecular and cellular mechanisms underlying this process. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This report is largely an in-vitro study and it would be beneficial to validate our findings using human primary endometrial cells. WIDER IMPLICATIONS OF THE FINDINGS: Our 3D microengineered vascularised endometrium-on-a-chip provides a new in-vitro approach to drug screening and drug discovery by mimicking the complicated behaviours of human endometrium. Thus, we suggest our model as a tool for addressing critical challenges and unsolved problems in female diseases, such as endometriosis, uterine cancer and female infertility, in a personalised manner. STUDY FUNDING/COMPETING INTEREST(S): This work is supported by funding from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) to Y.J.K. (No. 2018R1C1B6003), to J.A. (No. 2020R1I1A1A01074136) and to H.S.K. (No. 2020R1C1C100787212). The authors report no conflicts of interest.


Assuntos
Células Endoteliais , Dispositivos Lab-On-A-Chip , Implantação do Embrião , Endométrio , Feminino , Humanos , Ciclo Menstrual
2.
Cancer Lett ; 520: 267-280, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375710

RESUMO

Ovarian cancer is the deadliest gynecological malignancy worldwide. Although chemotherapy is required as the most standard treatment strategy for ovarian cancer, the survival rates are very low, largely because of high incidence of recurrence due to resistance to conventional surgery and genotoxic chemotherapies. Carboplatin-resistant ovarian cancer cells were generated by continuous treatment over six months. Carboplatin-resistance induced morphological alterations and promoted the rates of proliferation and migration of SKOV3 compared to the parental cells. Interestingly, carboplatin-resistant SKOV3 showed the high levels of γH2AX foci formed at the basal level, and the levels of γH2AX foci remained even after the recovery time, suggesting that the DNA damage response and repair machinery were severely attenuated by carboplatin-resistance. Surprisingly, the expression levels of XRCC4, a critical factor in non-homologous end joining (NHEJ) DNA repair, were significantly decreased in carboplatin-resistant SKOV3 compared with those in non-resistant controls. Furthermore, restoration of NHEJ in carboplatin-resistant SKOV3 by suppression of ABCB1 and/or AR re-sensitized carboplatin-resistant cells to genotoxic stress and reduced their proliferation ability. Our findings suggest that attenuation of the NHEJ DNA repair machinery mediated by resistance to genotoxic stress might be a critical cause of chemoresistance in patients with ovarian cancer.


Assuntos
Carboplatina/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Receptores Androgênicos/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carboplatina/efeitos adversos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
3.
Sci Rep ; 11(1): 7397, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795831

RESUMO

Successful pregnancy inevitably depends on the implantation of a competent embryo into a receptive endometrium. Although many substances have been suggested to improve the rate of embryo implantation targeting enhancement of endometrial receptivity, currently there rarely are effective evidence-based treatments to prevent or cure this condition. Here we strongly suggest minimally-invasive intra-uterine administration of embryo-secreted chemokine CXCL12 as an effective therapeutic intervention. Chemokine CXCL12 derived from pre- and peri-implanting embryos significantly enhances the rates of embryo attachment and promoted endothelial vessel formation and sprouting in vitro. Consistently, intra-uterine CXCL12 administration in C57BL/6 mice improved endometrial receptivity showing increased integrin ß3 and its ligand osteopontin, and induced endometrial angiogenesis displaying increased numbers of vessel formation near the lining of endometrial epithelial layer with higher CD31 and CD34 expression. Furthermore, intra-uterine CXCL12 application dramatically promoted the rates of embryo implantation with no morphologically retarded embryos. Thus, our present study provides a novel evidence that improved uterine endometrial receptivity and enhanced angiogenesis induced by embryo-derived chemokine CXCL12 may aid to develop a minimally-invasive therapeutic strategy for clinical treatment or supplement for the patients with repeated implantation failure with less risk.


Assuntos
Quimiocina CXCL12/genética , Implantação do Embrião/genética , Endométrio/fisiologia , Resultado da Gravidez , Animais , Biomarcadores , Coeficiente de Natalidade , Técnicas de Cultura de Células , Linhagem Celular , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacologia , Endométrio/efeitos dos fármacos , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Neovascularização Fisiológica/genética , Gravidez , Resultado da Gravidez/genética , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo
4.
Autophagy ; 17(12): 4231-4248, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33783327

RESUMO

Selective recognition and elimination of misfolded polypeptides are crucial for protein homeostasis. When the ubiquitin-proteasome system is impaired, misfolded polypeptides tend to form small cytosolic aggregates and are transported to the aggresome and eventually eliminated by the autophagy pathway. Despite the importance of this process, the regulation of aggresome formation remains poorly understood. Here, we identify TRIM28/TIF1ß/KAP1 (tripartite motif containing 28) as a negative regulator of aggresome formation. Direct interaction between TRIM28 and CTIF (cap binding complex dependent translation initiation factor) leads to inefficient aggresomal targeting of misfolded polypeptides. We also find that either treatment of cells with poly I:C or infection of the cells by influenza A viruses triggers the phosphorylation of TRIM28 at S473 in a way that depends on double-stranded RNA-activated protein kinase. The phosphorylation promotes association of TRIM28 with CTIF, inhibits aggresome formation, and consequently suppresses viral proliferation. Collectively, our data provide compelling evidence that TRIM28 is a negative regulator of aggresome formation.Abbreviations: BAG3: BCL2-associated athanogene 3; CTIF: CBC-dependent translation initiation factor; CED: CTIF-EEF1A1-DCTN1; DCTN1: dynactin subunit 1; EEF1A1: eukaryotic translation elongation factor 1 alpha 1; EIF2AK2: eukaryotic translation initiation factor 2 alpha kinase 2; HDAC6: histone deacetylase 6; IAV: influenza A virus; IP: immunoprecipitation; PLA: proximity ligation assay; polypeptidyl-puro: polypeptidyl-puromycin; qRT-PCR: quantitative reverse-transcription PCR; siRNA: small interfering RNA.


Assuntos
Autofagia , Vírus da Influenza A , Corpos de Inclusão/metabolismo , Vírus da Influenza A/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
5.
Reprod Sci ; 28(6): 1671-1687, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33650094

RESUMO

Endometrial angiogenesis plays crucial roles in determining the endometrial receptivity. Defects in endometrial receptivity often cause repeated implantation failure, which is one of the major unmet needs for infertility and contributes a major barrier to the assisted reproductive technology. Despite the numerous extensive research work, there are currently no effective evidence-based treatments to prevent or cure this condition. As a non-invasive treatment strategy, botulinum toxin A (BoTA) was administered into one side of mouse uterine horns, and saline was infused into the other side of horns for the control. Impact of BoTA was assessed in the endometrium at 3 or 8 days after infusion. We demonstrated that BoTA administration enhances the capacity of endothelial cell tube formation and sprouting. The intrauterine BoTA administration significantly induced endometrial angiogenesis displaying increased numbers of vessel formation and expression levels of related marker genes. Moreover, BoTA intrauterine application promoted the endometrial receptivity, and the rates of embryo implantation were improved with BoTA treatment with no morphologically retarded embryos. Intrauterine BoTA treatment has a beneficial effect on vascular reconstruction of functional endometrium prior to embryo implantation by increasing endometrial blood flow near the uterine cavity suggesting BoTA treatment as a potential therapeutic strategy for patients who are suffering from repeated implantation failure with the problems with endometrial receptivity.


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Implantação do Embrião/efeitos dos fármacos , Endométrio/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Técnicas de Cultura Embrionária , Feminino , Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Resultado da Gravidez , Útero/metabolismo
6.
Nat Commun ; 12(1): 1955, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782410

RESUMO

p62/SQSTM1 is known to act as a key mediator in the selective autophagy of protein aggregates, or aggrephagy, by steering ubiquitinated protein aggregates towards the autophagy pathway. Here, we use a yeast two-hybrid screen to identify the prefoldin-like chaperone UXT as an interacting protein of p62. We show that UXT can bind to protein aggregates as well as the LB domain of p62, and, possibly by forming an oligomer, increase p62 clustering for its efficient targeting to protein aggregates, thereby promoting the formation of the p62 body and clearance of its cargo via autophagy. We also find that ectopic expression of human UXT delays SOD1(A4V)-induced degeneration of motor neurons in a Xenopus model system, and that specific disruption of the interaction between UXT and p62 suppresses UXT-mediated protection. Together, these results indicate that UXT functions as an autophagy adaptor of p62-dependent aggrephagy. Furthermore, our study illustrates a cooperative relationship between molecular chaperones and the aggrephagy machinery that efficiently removes misfolded protein aggregates.


Assuntos
Autofagia/genética , Proteínas de Ciclo Celular/genética , Chaperonas Moleculares/genética , Agregados Proteicos , Proteína Sequestossoma-1/genética , Superóxido Dismutase-1/genética , Animais , Autofagia/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Leupeptinas/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Chaperonas Moleculares/metabolismo , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Superóxido Dismutase-1/metabolismo , Transgenes , Xenopus laevis , Proteína Vermelha Fluorescente
7.
Mol Biol Rep ; 48(2): 1439-1452, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33590416

RESUMO

Profilin-1 (PFN1) regulates actin polymerization and cytoskeletal growth. Despite the essential roles of PFN1 in cell integration, its subcellular function in keratinocyte has not been elucidated yet. Here we characterize the specific regulation of PFN1 in DNA damage response and repair machinery. PFN1 depletion accelerated DNA damage-mediated apoptosis exhibiting PTEN loss of function instigated by increased phosphorylated inactivation followed by high levels of AKT activation. PFN1 changed its predominant cytoplasmic localization to the nucleus upon DNA damage and subsequently restored the cytoplasmic compartment during the recovery time. Even though γH2AX was recruited at the sites of DNA double strand breaks in response to DNA damage, PFN1-deficient cells failed to recruit DNA repair factors, whereas control cells exhibited significant increases of these genes. Additionally, PFN1 depletion resulted in disruption of PTEN-AKT cascade upon DNA damage and CHK1-mediated cell cycle arrest was not recovered even after the recovery time exhibiting γH2AX accumulation. This might suggest PFN1 roles in regulating DNA damage response and repair machinery to protect cells from DNA damage. Future studies addressing the crosstalk and regulation of PTEN-related DNA damage sensing and repair pathway choice by PFN1 may further aid to identify new mechanistic insights for various DNA repair disorders.


Assuntos
Distúrbios no Reparo do DNA/genética , Reparo do DNA/genética , Histonas/genética , Profilinas/genética , Actinas/genética , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/genética , Citoplasma/genética , Citoesqueleto/genética , Dano ao DNA/genética , Distúrbios no Reparo do DNA/patologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Fosforilação/genética
8.
Tissue Cell ; 66: 101387, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32933710

RESUMO

Megalocytivirus infection is a major threat in rock bream aquaculture in Korea. To produce a highly concentrated megalocytivirus, primary cells, established cell line and persistently infected cell line were used in this study. Megalocytivirus was inoculated in primary fin cell cultures of red sea bream (Pagrus major), rock bream (Oplegnathus fasciatus), olive flounder (Paralichthys olivaceus) and black sea bream (Acanthopagrus schlegelii) and produced at similar concentrations of 108.99 - 9.88 viral particles/mL in all cultures while produced 107.31 viral particles/mL in grunt fin (GF) cell line. Since only red sea bream fin culture was amenable to subculturing for more than 100 times, it was established into Pagrus major fin (PMF) cell line. A persistently infected PMF cell line (PI-PMF) was obtained by continuous subculturing every 7 days as a batch culture system (PI-PMF-B) after infecting with megalocytivirus. Virus in supernatant of PI-PMF-B was maintained at high concentrations throughout over 50 consecutive subcultures in a relatively narrow range from 108.33 to 108.94 viral particles/mL with high level of CPE. For a more efficient and convenient production, a semi-batch culture system (PI-PMF-S) was developed in which culture media were exchanged at intervals of 3 days without subculturing for more than 50 media exchanges. Despite low virus productivity in a single cell (specific virus productivity, SVP), total cell number was increased in PI-PMF-S, allowing us to efficiently obtain a much higher concentration of virus (108.56 to 109.75 viral particles/mL) than in PMF-B. This is the first study to report detailed new methods for continuous and efficient production of high concentrations of megalocytivivrus with characterization of viral propagation in persistently infected cells.


Assuntos
Técnicas de Cultura de Células/métodos , Infecções por Vírus de DNA/virologia , Iridoviridae/crescimento & desenvolvimento , Animais , Técnicas de Cultura Celular por Lotes , Linhagem Celular , Efeito Citopatogênico Viral , Dosagem de Genes , Iridoviridae/patogenicidade , Perciformes
9.
BMC Biol ; 18(1): 60, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493324

RESUMO

BACKGROUND: Epithin/PRSS14, a type II transmembrane serine protease, is an emerging target of cancer therapy because of its critical roles in tumor progression and metastasis. In many circumstances, the protease, through its ectodomain shedding, exists as a soluble form and performs its proteolytic functions in extracellular environments increasing cellular invasiveness. The seemingly functional integrity of the soluble form raises the question of why the protease is initially made as a membrane-associated protein. RESULTS: In this report, we show that the epithin/PRSS14 intracellular domain (EICD) can be released from the membrane by the action of signal peptide peptidase-like 2b (SPPL2b) after ectodomain shedding. The EICD preferentially localizes in the nucleus and can enhance migration, invasion, and metastasis of epithelial cancer when heterologously expressed. Unbiased RNA-seq analysis and subsequent antibody arrays showed that EICD could control the gene expression of chemokines involved in cell motility, by increasing their promoter activities. Finally, bioinformatics analysis provided evidence for the clinical significance of the intramembrane proteolysis of epithin/PRSS14 by revealing that the poor survival of estrogen receptor (ER)-negative breast cancer patients with high epithin/PRSS14 expression is further worsened by high levels of SPPL2b. CONCLUSIONS: These results show that ectodomain shedding of epithin/PRSS14 can initiate a unique and synchronized bidirectional signal for cancer metastasis: extracellularly broadening proteolytic modification of the surrounding environment and intracellularly reprogramming the transcriptome for metastatic conversion. Clinically, this study also suggests that the intracellular function of epithin/PRSS14 should be considered for targeting this protease for anti-cancer treatment.


Assuntos
Neoplasias da Mama/genética , Proteínas de Membrana/genética , Proteólise , Serina Endopeptidases/genética , Animais , Neoplasias da Mama/fisiopatologia , Movimento Celular , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Serina Endopeptidases/metabolismo
10.
Clin Exp Reprod Med ; 47(2): 108-113, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32460455

RESUMO

OBJECTIVE: Endometrial fibrosis, the primary pathological feature of intrauterine adhesion, may lead to disruption of endometrial tissue structure, menstrual abnormalities, infertility, and recurrent pregnancy loss. At present, no ideal therapeutic strategy exists for this fibrotic disease. Eupatilin, a major pharmacologically active flavone from Artemisia, has been previously reported to act as a potent inducer of dedifferentiation of fibrotic tissue in the liver and lung. However, the effects of eupatilin on endometrial fibrosis have not yet been investigated. In this study, we present the first report on the impact of eupatilin treatment on transforming growth factor beta (TGF-ß)-induced endometrial fibrosis. METHODS: The efficacy of eupatilin on TGF-ß-induced endometrial fibrosis was assessed by examining changes in morphology and the expression levels of fibrosis markers using immunofluorescence staining and quantitative real-time reverse-transcription polymerase chain reaction. RESULTS: Eupatilin treatment significantly reduced the fibrotic activity of TGF-ß-induced endometrial fibrosis in Ishikawa cells, which displayed more circular shapes and formed more colonies. Additionally, the effects of eupatilin on fibrotic markers including alpha-smooth muscle actin, hypoxia-inducible factor 1 alpha, collagen type I alpha 1 chain, and matrix metalloproteinase-2, were evaluated in TGF-ß-induced endometrial fibrosis. The expression of these markers was highly upregulated by TGF-ß pretreatment and recovered to the levels of control cells in response to eupatilin treatment. CONCLUSION: Our findings suggest that suppression of TGF-ß-induced signaling by eupatilin might be an effective therapeutic strategy for the treatment of endometrial fibrosis.

11.
Clin Exp Reprod Med ; 47(2): 114-121, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32466630

RESUMO

OBJECTIVE: Despite extensive research on implantation failure, little is known about the molecular mechanisms underlying the crosstalk between the embryo and the maternal endometrium, which is critical for successful pregnancy. Profilin 1 (PFN1), which is expressed both in the embryo and in the endometrial epithelium, acts as a potent regulator of actin polymerization and the cytoskeletal network. In this study, we identified the specific role of endometrial PFN1 during embryo implantation. METHODS: Morphological alterations depending on the status of PFN1 expression were assessed in PFN1-depleted or control cells grown on Matrigel-coated cover glass. Day-5 mouse embryos were cocultured with Ishikawa cells. Comparisons of the rates of F-actin formation and embryo attachment were performed by measuring the stability of the attached embryo onto PFN1-depleted or control cells. RESULTS: Depletion of PFN1 in endometrial epithelial cells induced a significant reduction in cell-cell adhesion displaying less formation of colonies and a more circular cell shape. Mouse embryos co-cultured with PFN1-depleted cells failed to form actin cytoskeletal networks, whereas more F-actin formation in the direction of surrounding PFN1-intact endometrial epithelial cells was detected. Furthermore, significantly lower embryo attachment stability was observed in PFN1-depleted cells than in control cells. This may have been due to reduced endometrial receptivity caused by impaired actin cytoskeletal networks associated with PFN1 deficiency. CONCLUSION: These observations definitively demonstrate an important role of PFN1 in mediating cell-cell adhesion during the initial stage of embryo implantation and suggest a potential therapeutic target or novel biomarker for patients suffering from implantation failure.

12.
J Biol Chem ; 295(20): 7168-7177, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32241917

RESUMO

Serine protease 14 (Prss14)/epithin is a transmembrane serine protease that plays essential roles in tumor progression and metastasis and therefore is a promising target for managing cancer. Prss14/epithin shedding may underlie its activity in cancer and worsen outcomes; accordingly, a detailed understanding of the molecular mechanisms in Prss14/epithin shedding may inform the design of future cancer therapies. On the basis of our previous observation that an activator of PKC, phorbol 12-myristate 13-acetate (PMA), induces Prss14/epithin shedding, here we further investigated the intracellular signaling pathway involved in this process. While using mitogen-activated protein kinase inhibitors to investigate possible effectors of downstream PKC signaling, we unexpectedly found that an inhibitor of c-Jun N-terminal kinase (JNK), SP600125, induces Prss14/epithin shedding even in the absence of PMA. SP600125-induced shedding, like that stimulated by PMA, was mediated by tumor necrosis factor-α-converting enzyme. In contrast, a JNK activator, anisomycin, partially abolished the effects of SP600125 on Prss14/epithin shedding. Moreover, the results from loss-of-function experiments with specific inhibitors, short hairpin RNA-mediated knockdown, and overexpression of dominant-negative PKCßII variants indicated that PKCßII is a major player in JNK inhibition- and PMA-mediated Prss14/epithin shedding. SP600125 increased phosphorylation of PKCßII and tumor necrosis factor-α-converting enzyme and induced their translocation into the plasma membrane. Finally, in vitro cell invasion experiments and bioinformatics analysis of data in The Cancer Genome Atlas breast cancer database revealed that JNK and PKCßII are important for Prss14/epithin-mediated cancer progression. These results provide important information regarding strategies against tumor metastasis.


Assuntos
Antracenos/farmacologia , MAP Quinase Quinase 4/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína Quinase C beta/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Serina Endopeptidases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , MAP Quinase Quinase 4/metabolismo , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Proteína Quinase C beta/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Serina Endopeptidases/genética , Acetato de Tetradecanoilforbol/farmacologia
13.
J Exp Bot ; 71(1): 73-89, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494674

RESUMO

Aggrephagy, a type of selective autophagy that sequesters protein aggregates for degradation in the vacuole, is an important protein quality control mechanism, particularly during cell stress. In mammalian cells, aggrephagy and several other forms of selective autophagy are mediated by dedicated cargo receptors such as NEIGHBOR OF BRCA1 (NBR1). Although plant NBR1 homologs have been linked to selective autophagy during biotic stress, it remains unclear how they impact selective autophagy under non-stressed and abiotic stress conditions. Through microscopic and biochemical analysis of nbr1 mutants expressing autophagy markers and an aggregation-prone reporter, we tested the connection between NBR1 and aggrephagy in Arabidopsis. Although NBR1 is not essential for general autophagy, or for the selective clearance of peroxisomes, mitochondria, or the ER, we found that NBR1 is required for the heat-induced formation of autophagic vesicles. Moreover, cytoplasmic puncta containing aggregation-prone proteins, which were rarely observed in wild-type plants, were found to accumulate in nbr1 mutants under both control and heat stress conditions. Given that NBR1 co-localizes with these cytoplasmic puncta, we propose that Arabidopsis NBR1 is a plant aggrephagy receptor essential for maintaining proteostasis under both heat stress and non-stress conditions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Autofagia/genética , Proteínas de Transporte/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo
14.
Plant Physiol ; 176(2): 1559-1572, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29184027

RESUMO

Phosphatidylinositol 3-P (PI3P) is a signaling molecule that controls a variety of processes in endosomal, autophagic, and vacuolar/lysosomal trafficking in yeasts and mammals. Vacuolar protein sorting 34 (Vps34) is a conserved PI3K present in multiple complexes with specific functions and regulation. In yeast, the PI3K complex II consists of Vps34p, Vps15p, Vps30p/Atg6p, and Vps38p, and is essential for vacuolar protein sorting. Here, we describe the Arabidopsis (Arabidopsis thaliana) homolog of yeast Vps38p and human UV radiation resistance-associated gene protein. Arabidopsis VPS38 interacts with VPS30/ATG6 both in yeast and in planta. Although the level of PI3P in Arabidopsis vps38 mutants is similar to that in wild type, vps38 cells contain enlarged multivesicular endosomes and fewer organelles enriched in PI3P than the wild type. The vps38 mutants are defective in the trafficking of vacuolar cargo and its receptor VACUOLAR SORTING RECEPTOR2;1. The mutants also exhibit abnormal cytoplasmic distributions of endocytic cargo, such as auxin efflux carriers PINFORMED1 (PIN1) and PIN2. Constitutive autophagy is normal in the mutants but starvation-induced autophagy was slightly inhibited. We conclude that Arabidopsis VPS38 is dispensable for autophagy but essential for efficient targeting of biosynthetic and endocytic cargo to the vacuole.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Autofagia , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Endossomos/metabolismo , Mutação , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética
15.
Nanoscale ; 5(24): 12261-71, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150526

RESUMO

Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated.


Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Micelas , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/instrumentação , Biotina/química , Nanopartículas Metálicas/química , Análise Espectral Raman/instrumentação , Estereoisomerismo , Estreptavidina/química , Compostos de Sulfidrila/química , Propriedades de Superfície
16.
J Pharm Pharmacol ; 63(5): 695-706, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21492172

RESUMO

OBJECTIVES: Modified Bo-Yang-Hwan-O-Tang (mBHT) is an improved herbal formula of BHT, which has been widely used to treat ischaemic stroke in East Asia, by the addition of five herbs having anti-ischaemic properties. In this study, we investigated whether mBHT would reduce cerebral ischaemic injury in rats. METHODS: Sprague-Dawley rats were subjected to a 90-min middle cerebral artery occlusion (MCAO) and subsequent 22-h reperfusion. mBHT was administered either intraperitoneally twice 15 min before and 15 min after, or orally once 30 min or 120 min after the onset of MCAO (50 or 200 mg/kg each). KEY FINDINGS: Intraperitoneal administration of mBHT markedly reduced the cerebral infarct size and neurological deficit caused by MCAO/reperfusion. mBHT treatment also significantly improved long-term survival rate after cerebral ischaemic injury. Oral administration of mBHT 30 min after ischaemia also markedly reduced the infarct size after cerebral ischaemia. The anti-ischaemic effect of mBHT was significantly, but not fully, reduced when mBHT-induced hypothermia was abolished. In cultured cortical neurons, we further found that mBHT decreased oxygen-glucose deprivation/re-oxygenation-evoked neuronal injury by inhibiting production of reactive oxygen species, decrease in mitochondrial transmembrane potential, and activation of caspase-3. However, mBHT did not inhibit N-Methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity. CONCLUSIONS: Taken together, our data suggest that mBHT has multiple anti-ischaemic properties and would be a good therapeutic herbal prescription for the treatment of cerebral ischaemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/prevenção & controle , Transtornos Cognitivos/prevenção & controle , Hipotermia Induzida , Fitoterapia , Extratos Vegetais/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Animais , Caspase 3/metabolismo , Células Cultivadas , Infarto Cerebral/complicações , Infarto Cerebral/metabolismo , Cérebro/citologia , Cérebro/efeitos dos fármacos , Cérebro/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Glucose/metabolismo , Infarto da Artéria Cerebral Média , Masculino , Medicina Tradicional Coreana , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/antagonistas & inibidores , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...