Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(20): 13214-13225, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717114

RESUMO

Facing the escalating threat of viruses worldwide, the development of efficient sensor elements for rapid virus detection has never been more critical. Traditional point-of-care (POC) sensors struggle due to their reliance on fragile biological receptors and limited adaptability to viral strains. In this study, we introduce a nanosensor design for receptor-free virus recognitions using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) functionalized with a poly(ethylene glycol) (PEG)-phospholipid (PEG-lipid) array. Three-dimensional (3D) corona interfaces of the nanosensor array enable selective and sensitive detection of diverse viruses, including Ebola, Lassa, H3N2, H1N1, Middle East respiratory syndrome (MERS), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and SARS-CoV-2, even without any biological receptors. The PEG-lipid components, designed considering chain length, fatty acid saturation, molecular weight, and end-group moieties, allow for precise quantification of viral recognition abilities. High-throughput automated screening of the array demonstrates how the physicochemical properties of the PEG-lipid/SWCNT 3D corona interfaces correlate with viral detection efficiency. Utilizing molecular dynamics and AutoDock simulations, we investigated the impact of PEG-lipid components on 3D corona interface formation, such as surface coverage and hydrodynamic radius and specific molecular interactions based on chemical potentials. Our findings not only enhance detection specificity across various antigens but also accelerate the development of sensor materials for promptly identifying and responding to emerging antigen threats.


Assuntos
Nanotubos de Carbono , Polietilenoglicóis , SARS-CoV-2 , Nanotubos de Carbono/química , Polietilenoglicóis/química , SARS-CoV-2/isolamento & purificação , Humanos , COVID-19/virologia , Fosfolipídeos/química , Técnicas Biossensoriais/métodos , Vírus/química , Polímeros/química
2.
ACS Meas Sci Au ; 3(6): 393-403, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145025

RESUMO

With the definition of therapeutics now encompassing transplanted or engineered cells and their molecular products, there is a growing scientific necessity for analytics to understand this new category of drugs. This Perspective highlights the recent development of new measurement science on label-free single cell analysis, nanosensor chemical cytometry (NCC), and their potential for cellular therapeutics and precision medicine. NCC is based on microfluidics integrated with fluorescent nanosensor arrays utilizing the optical lensing effect of a single cell to real-time extract molecular properties and correlate them with physical attributes of single cells. This new class of cytometry can quantify the heterogeneity of the multivariate physicochemical attributes of the cell populations in a completely label-free and nondestructive way and, thus, suggest the vein-to-vein conditions for the safe therapeutic applications. After the introduction of the NCC technology, we suggest the technological development roadmap for the maturation of the new field: from the sensor/chip design perspective to the system/software development level based on hardware automation and deep learning data analytics. The advancement of this new single cell sensing technology is anticipated to aid rich and multivariate single cell data setting and support safe and reliable cellular therapeutics. This new measurement science can lead to data-driven personalized precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...