Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 3031-3041, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38224063

RESUMO

This research presents a simple but general method to prepare water-soluble-polymer-based superabsorbent hydrogels with predefined microscale geometries and controlled swelling properties. Unlike conventional hydrogel preparation methods based on bulk solution-phase cross-linking, poly(vinyl alcohol) is homogeneously mixed with polymer-based cross-linkers in the solution phase and thermally cross-linked in the solid phase after drying; the degree of cross-linking is modulated by controlling the cross-linker concentration, pH, and/or thermal annealing conditions. After the shape definition process, cross-linked films or electrospun nanofibers are treated with sulfuric acid to weaken hydrogen bonds and introduce sulfate functionality in polymer crystallites. The resultant superabsorbent hydrogels exhibit an isotropic expansion of the predefined geometry and tunable swelling properties. Particularly, hydrogel microfibers exhibit excellent optical transparency, good biocompatibility, large porosity, and controlled cell adhesion, leading to versatile 3D cell culture scaffolds that not only support immortalized cell lines and primary neurons but also enable stiffness-modulated cell adhesion studies.

2.
ACS Appl Mater Interfaces ; 16(6): 7700-7708, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38289231

RESUMO

In the dynamic landscape of industrial processes, membrane technology offers a paradigm shift beyond energy-intensive separation techniques, exemplifying a progressive leap toward sustainability. In this regard, highly flexible and uniform poly(3,4-ethylenedioxythiophene)polystyrenesulfonate (PEDOT:PSS)-engineered membranes at a reduced thickness have been fabricated on track-etched poly(ethylene terephthalate) (PET) substrates. The membranes were functionalized and embedded with platinum nanoparticles (Pt NPs) having a higher affinity toward H2 gas. The materials and fabricated membranes were characterized by using high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM) techniques for morphological and structural analysis. FTIR and Raman characterizations were performed to study the characteristic bonds. The uniformity and quantification of Pt nanoparticle binding were tested through inductively coupled plasma mass spectrometry (ICP-MS) studies and FESEM with EDS mapping. The gas separation performance was studied using H2, N2, and CO2 gases in pure and mixed (H2/CO2 in 50:50) states. It was observed that the modified membrane showed a 116% increment in H2 permeability and 82 and 107% increment in H2/CO2 and H2/N2 selectivity values with pure gas, while a 121% increment in H2 permeability and 156% increment in H2/CO2 selectivity using mixed gas. The separation performance in pure and mixed gas states with repeated experiments conspicuously highlighted their prospective viability as prime contenders for gas separation applications.

3.
Adv Mater ; 36(4): e2307402, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989225

RESUMO

For optimizing steady-state performance in organic electrochemical transistors (OECTs), both molecular design and structural alignment approaches must work in tandem to minimize energetic and microstructural disorders in polymeric mixed ionic-electronic conductor films. Herein, a series of poly(diketopyrrolopyrrole)s bearing various lengths of aliphatic-glycol hybrid side chains (PDPP-mEG; m = 2-5) is developed to achieve high-performance p-type OECTs. PDPP-4EG polymer with the optimized length of side chains exhibits excellent crystallinity owing to enhanced lamellar and backbone interactions. Furthermore, the improved structural ordering in PDPP-4EG films significantly decreases trap state density and energetic disorder. Consequently, PDPP-4EG-based OECT devices produce a mobility-volumetric capacitance product ([µC*]) of 702 F V-1 cm-1 s-1 and a hole mobility of 6.49 ± 0.60 cm2 V-1 s-1 . Finally, for achieving the optimal structural ordering along the OECT channel direction, a floating film transfer method is employed to reinforce the unidirectional orientation of polymer chains, leading to a substantially increased figure-of-merit [µC*] to over 800 F V-1 cm-1 s-1 . The research demonstrates the importance of side chain engineering of polymeric mixed ionic-electronic conductors in conjunction with their anisotropic microstructural optimization to maximize OECT characteristics.

4.
Nat Commun ; 14(1): 7577, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016963

RESUMO

Despite the growing interest in dynamic behaviors at the frequency domain, there exist very few studies on molecular orientation-dependent transient responses of organic mixed ionic-electronic conductors. In this research, we investigated the effect of ion injection directionality on transient electrochemical transistor behaviors by developing a model mixed conductor system. Two polymers with similar electrical, ionic, and electrochemical characteristics but distinct backbone planarities and molecular orientations were successfully synthesized by varying the co-monomer unit (2,2'-bithiophene or phenylene) in conjunction with a novel 1,4-dithienylphenylene-based monomer. The comprehensive electrochemical analysis suggests that the molecular orientation affects the length of the ion-drift pathway, which is directly correlated with ion mobility, resulting in peculiar OECT transient responses. These results provide the general insight into molecular orientation-dependent ion movement characteristics as well as high-performance device design principles with fine-tuned transient responses.

5.
ACS Appl Mater Interfaces ; 15(48): 56464-56477, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37987616

RESUMO

Nanoscale heterojunction networks are increasingly regarded as promising functional materials for a variety of optoelectronic and photocatalytic devices. Despite their superior charge-carrier separation efficiency, a major challenge remains in the optimization of their surface properties, with surface defects playing a major role in charge trapping and recombination. Here, we report the effective engineering of the photocatalytic properties of nanoscale heterojunction networks via deep ultraviolet photoactivation throughout their cross-section. For the first time, in-depth XPS analysis of very thick (∼10 µm) NixOy-ZnO films reveals localized p-n nanoheterojunctions with tunable oxygen vacancies (Vo) originating from both NixOy and ZnO nanocrystals. Optimizing the amount of oxygen vacancies leads to a 30-fold increase in the photochemoresistive response of these networks, enabling the detection of representative analyte concentrations down to 2 and 20 ppb at an optimal temperature of 150 °C and room temperature, respectively. Density functional theory calculations reveal that this performance enhancement is presumably due to an 80% increase in the analyte adsorption energy. This flexible nanofabrication approach in conjunction with straightforward vacancy control via photoactivation provides an effective strategy for engineering the photocatalytic activity of porous metal oxide semiconductor networks with applications in chemical sensors, photodetectors, and photoelectrochemical cells.

6.
Environ Sci Pollut Res Int ; 30(48): 105387-105397, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37713078

RESUMO

Through this work, we are reporting high-performance ZIF-8 @polycarbonate nanocomposite membranes with satisfactory structural stability for improving the gas separation performance. ZIF-8 nanoparticles were synthesised using the wet chemical route with cubic morphology and controlled size using CTAB as a surfactant. The membranes were prepared using the solution casting method by adding ZIF-8 filler at various concentrations. The synthesised filler material and MMMs were characterised through X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and RAMAN spectroscopy techniques. The gas separation measurements were taken using H2, CO2, and N2 gas in the purest form. The SEM results confirm the formation of spherulite-like morphology with the addition of ZIF-8 due to the crystallisation of the polymer, which increased the membrane's free volume and opened up additional pathways for the transportation of the gas molecules. The gas separation results confirmed that the 15 wt% ZIF-8/PC nanocomposite membrane showed the maximum H2 permeability of 180,970 barrer with an increment of 316.03%, while H2/CO2 and H2/N2 selectivity showed the increments of 89.43% and 103.64%, respectively. Therefore, this PC/ZIF-8 system seems to be a promising approach to developing new H2 selective membranes with high gas permeability and gas selectivity values.


Assuntos
Dióxido de Carbono , Nanocompostos , Carbonatos , Excipientes , Hidrogênio , Permeabilidade
7.
Angew Chem Int Ed Engl ; 62(29): e202304390, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37204070

RESUMO

Thiophenes functionalised in the 3-position are ubiquitous building blocks for the design and synthesis of organic semiconductors. Their non-centrosymmetric nature has long been used as a powerful synthetic design tool exemplified by the vastly different properties of regiorandom and regioregular poly(3-hexylthiophene) owing to the repulsive head-to-head interactions between neighbouring side chains in the regiorandom polymer. The renewed interest in highly electron-rich 3-alkoxythiophene based polymers for bioelectronic applications opens up new considerations around the regiochemistry of these systems as both the head-to-tail and head-to-head couplings adopt near-planar conformations due to attractive intramolecular S-O interactions. To understand how this increased flexibility in the molecular design can be used advantageously, we explore in detail the geometrical and electronic effects that influence the optical, electrochemical, structural, and electrical properties of a series of six polythiophene derivatives with varying regiochemistry and comonomer composition. We show how the interplay between conformational disorder, backbone coplanarity and polaron distribution affects the mixed ionic-electronic conduction. Ultimately, we use these findings to identify a new conformationally restricted polythiophene derivative for p-type accumulation-mode organic electrochemical transistor applications with performance on par with state-of-the-art mixed conductors evidenced by a µC* product of 267 F V-1 cm-1 s-1 .

8.
Chem Mater ; 35(8): 3290-3299, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37123107

RESUMO

Emergent bioelectronic technologies are underpinned by the organic electrochemical transistor (OECT), which employs an electrolyte medium to modulate the conductivity of its organic semiconductor channel. Here we utilize postpolymerization modification (PPM) on a conjugated polymer backbone to directly introduce glycolated or anionic side chains via fluoride displacement. The resulting polymers demonstrated increased volumetric capacitances, with subdued swelling, compared to their parent polymer in p-type enhancement mode OECTs. This increase in capacitance was attributed to their modified side chain configurations enabling cationic charge compensation for thin film electrochemical oxidation, as deduced from electrochemical quartz crystal microbalance measurements. An overall improvement in OECT performance was recorded for the hybrid glycol/ionic polymer compared to the parent, owing to its low swelling and bimodal crystalline orientation as imaged by grazing-incidence wide-angle X-ray scattering, enabling its high charge mobility at 1.02 cm2·V-1·s-1. Compromised device performance was recorded for the fully glycolated derivative compared to the parent, which was linked to its limited face-on stacking, which hindered OECT charge mobility at 0.26 cm2·V-1·s-1, despite its high capacitance. These results highlight the effectiveness of anionic side chain attachment by PPM as a means of increasing the volumetric capacitance of p-type conjugated polymers for OECTs, while retaining solid-state macromolecular properties that facilitate hole transport.

9.
APL Bioeng ; 7(2): 026102, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37056513

RESUMO

Biocompatible field-effect-transistor-based biosensors have drawn attention for the development of next-generation human-friendly electronics. High-performance electronic devices must achieve low-voltage operation, long-term operational stability, and biocompatibility. Herein, we propose an electrolyte-gated thin-film transistor made of large-area solution-processed indium-gallium-zinc oxide (IGZO) semiconductors capable of directly interacting with live cells at physiological conditions. The fabricated transistors exhibit good electrical performance operating under sub-0.5 V conditions with high on-/off-current ratios (>107) and transconductance (>1.0 mS) over an extended operational lifetime. Furthermore, we verified the biocompatibility of the IGZO surface to various types of mammalian cells in terms of cell viability, proliferation, morphology, and drug responsiveness. Finally, the prolonged stable operation of electrolyte-gated transistor devices directly integrated with live cells provides the proof-of-concept for solution-processed metal oxide material-based direct cellular interfaces.

10.
Biomater Res ; 27(1): 19, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907873

RESUMO

BACKGROUND: Hydrogels have been widely used in many research fields owing to optical transparency, good biocompatibility, tunable mechanical properties, etc. Unlike typical hydrogels in the form of an unstructured bulk material, we developed aqueous dispersions of fiber-shaped hydrogel structures with high stability under ambient conditions and their application to various types of transparent soft cell culture interfaces with anisotropic nanoscale topography. METHOD: Nanofibers based on the polyvinyl alcohol and polyacrylic acid mixture were prepared by electrospinning and hydrogelified to nano-fibrous hydrogels (nFHs) after thermal crosslinking and sulfuric acid treatment. By modifying various material surfaces with positively-charged polymers, negatively-charged superabsorbent nFHs could be selectively patterned by employing micro-contact printing or horizontally aligned by applying shear force with a wired bar coater. RESULTS: The angular distribution of bar-coated nFHs was dramatically reduced to ± 20° along the applied shear direction unlike the drop-coated nFHs which exhibit random orientations. Next, various types of cells were cultured on top of transparent soft nFHs which showed good viability and attachment while their behaviors could be easily monitored by both upright and inverted optical microscopy. Particularly, neuronal lineage cells such as PC 12 cells and embryonic hippocampal neurons showed highly stretched morphology along the overall fiber orientation with aspect ratios ranging from 1 to 14. Furthermore, the resultant neurite outgrowth and migration behaviors could be effectively controlled by the horizontal orientation and the three-dimensional arrangement of underlying nFHs, respectively. CONCLUSION: We expect that surface modifications with transparent soft nFHs will be beneficial for various biological/biomedical studies such as fundamental cellular studies, neuronal/stem cell and/or organoid cultures, implantable probe/device coatings, etc.

11.
Angew Chem Weinheim Bergstr Ger ; 135(29): e202304390, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38528843

RESUMO

Thiophenes functionalised in the 3-position are ubiquitous building blocks for the design and synthesis of organic semiconductors. Their non-centrosymmetric nature has long been used as a powerful synthetic design tool exemplified by the vastly different properties of regiorandom and regioregular poly(3-hexylthiophene) owing to the repulsive head-to-head interactions between neighbouring side chains in the regiorandom polymer. The renewed interest in highly electron-rich 3-alkoxythiophene based polymers for bioelectronic applications opens up new considerations around the regiochemistry of these systems as both the head-to-tail and head-to-head couplings adopt near-planar conformations due to attractive intramolecular S-O interactions. To understand how this increased flexibility in the molecular design can be used advantageously, we explore in detail the geometrical and electronic effects that influence the optical, electrochemical, structural, and electrical properties of a series of six polythiophene derivatives with varying regiochemistry and comonomer composition. We show how the interplay between conformational disorder, backbone coplanarity and polaron distribution affects the mixed ionic-electronic conduction. Ultimately, we use these findings to identify a new conformationally restricted polythiophene derivative for p-type accumulation-mode organic electrochemical transistor applications with performance on par with state-of-the-art mixed conductors evidenced by a µC* product of 267 F V-1 cm-1 s-1.

12.
Adv Mater ; 34(7): e2107355, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34852181

RESUMO

Owing to their outstanding electrical/electrochemical performance, operational stability, mechanical flexibility, and decent biocompatibility, organic mixed ionic-electronic conductors have shown great potential as implantable electrodes for neural recording/stimulation and as active channels for signal switching/amplifying transistors. Nonetheless, no studies exist on a general design rule for high-performance electrochemical diodes, which are essential for highly functional circuit architectures. In this work, generalizable electrochemical diodes with a very high current density over 30 kA cm-2 are designed by introducing an asymmetric active layer based on organic mixed ionic-electronic conductors. The underlying mechanism on polarity-sensitive balanced ionic doping/dedoping is elucidated by numerical device analysis and in operando spectroelectrochemical potential mapping, while the general material requirements for electrochemical diode operation are deduced using various types of conjugated polymers. In parallel, analog signal rectification and digital logic processing circuits are successfully demonstrated to show the broad impact of circuits incorporating organic electrochemical diodes. It is expected that organic electrochemical diodes will play vital roles in realizing multifunctional soft bioelectronic circuitry in combination with organic electrochemical transistors.

13.
Angew Chem Int Ed Engl ; 60(36): 19679-19684, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228896

RESUMO

Two new glycolated semiconducting polymers PgBT(F)2gT and PgBT(F)2gTT of differing backbone curvatures were designed and synthesised for application as p-type accumulation mode organic electrochemical transistor (OECT) materials. Both polymers demonstrated stable and reversible oxidation, accessible within the aqueous electrochemical window, to generate polaronic charge carriers. OECTs fabricated from PgBT(F)2gT featuring a curved backbone geometry attained a higher volumetric capacitance of 170 F cm-3 . However, PgBT(F)2gTT with a linear backbone displayed overall superior OECT performance with a normalised peak transconductance of 3.00×104  mS cm-1 , owing to its enhanced order, expediting the charge mobility to 0.931 cm2 V-1 s-1 .

14.
Sci Total Environ ; 775: 145793, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631597

RESUMO

Microplastics (MPs) pollution has become one of the most severe environmental concerns today. MPs persist in the environment and cause adverse effects in organisms. This review aims to present a state-of-the-art overview of MPs in the aquatic environment. Personal care products, synthetic clothing, air-blasting facilities and drilling fluids from gas-oil industries, raw plastic powders from plastic manufacturing industries, waste plastic products and wastewater treatment plants act as the major sources of MPs. For MPs analysis, pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS), Py-MS methods, Raman spectroscopy, and FT-IR spectroscopy are regarded as the most promising methods for MPs identification and quantification. Due to the large surface area to volume ratio, crystallinity, hydrophobicity and functional groups, MPs can interact with various contaminants such as heavy metals, antibiotics and persistent organic contaminants. Among different physical and biological treatment technologies, the MPs removal performance decreases as membrane bioreactor (> 99%) > activated sludge process (~98%) > rapid sand filtration (~97.1%) > dissolved air floatation (~95%) > electrocoagulation (> 90%) > constructed wetlands (88%). Chemical treatment methods such as coagulation, magnetic separations, Fenton, photo-Fenton and photocatalytic degradation also show moderate to high efficiency of MP removal. Hybrid treatment technologies show the highest removal efficacies of MPs. Finally, future research directions for MPs are elaborated.

15.
Adv Mater ; 33(10): e2007550, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33538016

RESUMO

Despite the importance of carrier mobility, recent research efforts have been mainly focused on the improvement of volumetric capacitance in order to maximize the figure-of-merit, µC* (product of carrier mobility and volumetric capacitance), for high-performance organic electrochemical transistors. Herein, high-performance microfiber-based organic electrochemical transistors with unprecedentedly large µC* using highly ordered crystalline poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) microfibers with very high carrier mobilities are reported. The strain engineering via uniaxial tension is employed in combination with solvent-mediated crystallization in the course of drying coagulated fibers, resulting in the permanent preferential alignment of crystalline PEDOT:PSS domains along the fiber direction, which is verified by atomic force microscopy and transmission wide-angle X-ray scattering. The resultant strain-engineered microfibers exhibit very high carrier mobility (12.9 cm2 V-1 s-1 ) without the trade-off in volumetric capacitance (122 F cm-3 ) and hole density (5.8 × 1020  cm-3 ). Such advantageous electrical and electrochemical characteristics offer the benchmark parameter of µC* over ≈1500 F cm-1  V-1  s-1 , which is the highest metric ever reported in the literature and can be beneficial for realizing a new class of substrate-free fibrillar and/or textile bioelectronics in the configuration of electrochemical transistors and/or electrochemical ion pumps.


Assuntos
Equipamentos e Provisões Elétricas , Microtecnologia/instrumentação , Compostos Orgânicos , Anisotropia
16.
ACS Appl Mater Interfaces ; 13(2): 2820-2828, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33405507

RESUMO

In this research, we report the rapid and reliable formation of high-performance nanoscale bilayer oxide dielectrics on silicon substrates via low-temperature deep ultraviolet (DUV) photoactivation. The optical analysis of sol-gel aluminum oxide films prepared at various concentrations reveals the processable film thickness with DUV photoactivation and its possible generalization to the formation of various metal oxide films on silicon substrates. The physicochemical and electrical characterizations confirm that DUV photoactivation accelerates the efficient formation of a highly dense aluminum oxide and aluminum silicate bilayer (17 nm) on heavily doped silicon at 150 °C within 5 min owing to the efficient thermal conduction on silicon, resulting in excellent dielectric properties in terms of low leakage current (∼10-8 A/cm2 at 1.0 MV/cm) and high areal capacitance (∼0.4 µF/cm2 at 100 kHz) with narrow statistical distributions. Additionally, the sol-gel bilayer oxide dielectrics are successfully combined with a sol-gel indium-gallium-zinc oxide semiconductor via two successive DUV photoactivation cycles, leading to the efficient fabrication of solution-processed oxide thin-film transistors on silicon substrates with an operational voltage below 0.5 V. We expect that in combination with large-area printing, the bilayer oxide dielectrics are beneficial for large-area solution-based oxide electronics on silicon substrates, while DUV photoactivation can be applied to various types of solution-processed functional metal oxides such as phase-transition memories, ferroelectrics, photocatalysts, charge-transporting interlayers and passivation layers, etc. on silicon substrates.

19.
ACS Infect Dis ; 6(10): 2732-2744, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32865961

RESUMO

The modulation of conformational flexibility in antimicrobial peptides (AMPs) has been investigated as a strategy to improve their efficacy against bacterial pathogens while reducing their toxicity. Here, we synthesized a library of helicity-modulated antimicrobial peptoids by the position-specific incorporation of helix-inducing monomers. The peptoids displayed minimal variations in hydrophobicity, which permitted the specific assessment of the effect of conformational differences on antimicrobial activity and selectivity. Among the moderately helical peptoids, the most dramatic increase in selectivity was observed in peptoid 17, providing more than a 20-fold increase compared to fully helical peptoid 1. Peptoid 17 had potent broad-spectrum antimicrobial activity that included clinically isolated multi-drug-resistant pathogens. Compared to pexiganan AMP, 17 showed superior metabolic stability, which could potentially reduce the dosage needed, alleviating toxicity. Dye-uptake assays and high-resolution imaging revealed that the antimicrobial activity of 17 was, as with many AMPs, mainly due to membrane disruption. However, the high selectivity of 17 reflected its unique conformational characteristics, with differential interactions between bacterial and erythrocyte membranes. Our results suggest a way to distinguish different membrane compositions solely by helicity modulation, thereby improving the selectivity toward bacterial cells with the maintenance of potent and broad-spectrum activity.


Assuntos
Anti-Infecciosos , Peptoides , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Interações Hidrofóbicas e Hidrofílicas , Peptoides/farmacologia
20.
Macromol Biosci ; 20(11): e2000211, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32851795

RESUMO

Organic electrochemical transistors that employ polymeric mixed conductors as their active channels are one of the most prominent biosensor platforms because of their signal amplification capability, low fabrication cost, mechanical flexibility, and various properties tunable through molecular design. For application to biomedical devices, polymeric mixed conductors should fulfill several requirements, such as excellent conductivities of both holes/electrons and ions, long-term operation stability, and decent biocompatibility. However, trade-offs may exist, for instance, one between ionic conduction and overall device stability. In this report, the fundamental understanding of polymeric mixed conductors, the recent advance in enhancing their ionic and electrical conductivity, and their practical applications as biosensors based on organic electrochemical transistors are reviewed. Finally, key strategies are suggested for developing novel polymeric mixed conductors that may exceed the trade-off between device performance and stability.


Assuntos
Técnicas Biossensoriais/métodos , Condutividade Elétrica , Eletroquímica , Polímeros/química , Transistores Eletrônicos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...