Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 42(8): 112868, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37494188

RESUMO

Cells maintain and dynamically change their proteomes according to the environment and their needs. Mechanistic target of rapamycin (mTOR) is a key regulator of proteostasis, homeostasis of the proteome. Thus, dysregulation of mTOR leads to changes in proteostasis and the consequent progression of diseases, including cancer. Based on the physiological and clinical importance of mTOR signaling, we investigated mTOR feedback signaling, proteostasis, and cell fate. Here, we reveal that mTOR targeting inhibits eIF4E-mediated cap-dependent translation, but feedback signaling activates a translation initiation factor, eukaryotic translation initiation factor 3D (eIF3D), to sustain alternative non-canonical translation mechanisms. Importantly, eIF3D-mediated protein synthesis enables cell phenotype switching from proliferative to more migratory. eIF3D cooperates with mRNA-binding proteins such as heterogeneous nuclear ribonucleoprotein F (hnRNPF), heterogeneous nuclear ribonucleoprotein K (hnRNPK), and Sjogren syndrome antigen B (SSB) to support selective mRNA translation following mTOR inhibition, which upregulates and activates proteins involved in insulin receptor (INSR)/insulin-like growth factor 1 receptor (IGF1R)/insulin receptor substrate (IRS) and interleukin 6 signal transducer (IL-6ST)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. Our study highlights the mechanisms by which cells establish the dynamic change of proteostasis and the resulting phenotype switch.


Assuntos
Proteostase , Receptor de Insulina , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sirolimo , Biossíntese de Proteínas
3.
Sci Signal ; 15(715): eabm6211, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982577

RESUMO

DNA damage and subsequent cellular response are the basis for many cancer treatments. In this issue of Science Signaling, Liu et al. elucidate a mechanism by which cancer cells survive DNA damage induced by radiation and chemotherapy.


Assuntos
Dano ao DNA , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Cancer Cell ; 36(4): 402-417.e13, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31564638

RESUMO

Metastasis is the leading cause of cancer mortality. Chromatin remodeling provides the foundation for the cellular reprogramming necessary to drive metastasis. However, little is known about the nature of this remodeling and its regulation. Here, we show that metastasis-inducing pathways regulate histone chaperones to reduce canonical histone incorporation into chromatin, triggering deposition of H3.3 variant at the promoters of poor-prognosis genes and metastasis-inducing transcription factors. This specific incorporation of H3.3 into chromatin is both necessary and sufficient for the induction of aggressive traits that allow for metastasis formation. Together, our data clearly show incorporation of histone variant H3.3 into chromatin as a major regulator of cell fate during tumorigenesis, and histone chaperones as valuable therapeutic targets for invasive carcinomas.


Assuntos
Carcinoma/patologia , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Metástase Neoplásica/genética , Animais , Carcinogênese/genética , Carcinoma/genética , Linhagem Celular Tumoral , Cromatina/genética , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Progressão da Doença , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Feminino , Histonas/genética , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , RNA-Seq , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Biochem Biophys Rep ; 20: 100656, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31467990

RESUMO

Naïve pluripotent stem cells (PSCs) display a distinctive phenotype when compared to their "primed" counterparts, including, but not limited to, increased potency to differentiate and more robust mitochondrial respiration. The cultivation and maintenance of naïve PSCs have been notoriously challenging, requiring the use of complex cytokine cocktails. NME7AB is a newly discovered embryonic stem cell growth factor that is expressed exclusively in the first few days of human blastocyst development. It has been previously reported that growing primed induced PSCs (iPSCs) in bFGF-depleted medium with NME7AB as the only added growth factor facilitates the regression of these cells to their naïve state. Here, we confirm this regression by demonstrating the reactivation of mitochondrial function in the induced naïve-like PSCs and increased ATP production in these cells, as compared to that in primed iPSCs.

8.
Exp Cell Res ; 379(1): 55-64, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30922922

RESUMO

Metabolic studies of human pluripotent stem cells (hPSCs) have focused on how the cells produce energy through the catabolic pathway. The less-studied anabolic pathway, by which hPSCs expend energy in the form of adenosine triphosphate (ATP), is not yet fully understood. Compared to fully differentiated somatic cells, hPSCs undergo significant changes not only in their gene expression but also in their production and/or expenditure of ATP. Here, we investigate how hPSCs tightly control their energy homeostasis by studying the main energy-consuming process, mRNA translation. In addition, change of subcellular organelles regarding energy homeostasis has been investigated. Lysosomes are organelles that play an important role in the elimination of unnecessary cellular materials by digestion and in the recycling system of the cell. We have found that hPSCs control their lysosome numbers in part by regulating lysosomal gene/protein expression. Thus, because the levels of mRNA translation rate are lower in hPSCs than in somatic cells, not only the global translational machinery but also the lysosomal recycling machinery is suppressed in hPSCs. Overall, the results of our study suggest that hPSCs reprogram gene expression and signaling to regulate energy-consuming processes and energy-controlling organelles.


Assuntos
Metabolismo Energético/fisiologia , Organelas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Trifosfato de Adenosina/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Expressão Gênica/fisiologia , Homeostase/fisiologia , Humanos , Lisossomos/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
9.
Proc Natl Acad Sci U S A ; 116(8): 2967-2976, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30728292

RESUMO

ERK is a key coordinator of the epithelial-to-mesenchymal transition (EMT) in that a variety of EMT-inducing factors activate signaling pathways that converge on ERK to regulate EMT transcription programs. However, the mechanisms by which ERK controls the EMT program are not well understood. Through an analysis of the global changes of gene expression mediated by ERK2, we identified the transcription factor FoxO1 as a potential mediator of ERK2-induced EMT, and thus we investigated the mechanism by which ERK2 regulates FoxO1. Additionally, our analysis revealed that ERK2 induced the expression of Dock10, a Rac1/Cdc42 GEF, during EMT. We demonstrate that the activation of the Rac1/JNK signaling axis downstream of Dock10 leads to an increase in FoxO1 expression and EMT. Taken together, our study uncovers mechanisms by which epithelial cells acquire less proliferative but more migratory mesenchymal properties and reveals potential therapeutic targets for cancers evolving into a metastatic disease state.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteína Forkhead Box O1/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Ativação Transcricional/genética , Proteínas rac1 de Ligação ao GTP/genética
10.
Cancer Res ; 78(9): 2191-2204, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29440170

RESUMO

Metabolic reprogramming is a hallmark of cancer that includes increased glucose uptake and accelerated aerobic glycolysis. This phenotype is required to fulfill anabolic demands associated with aberrant cell proliferation and is often mediated by oncogenic drivers such as activated BRAF. In this study, we show that the MAPK-activated p90 ribosomal S6 kinase (RSK) is necessary to maintain glycolytic metabolism in BRAF-mutated melanoma cells. RSK directly phosphorylated the regulatory domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2), an enzyme that catalyzes the synthesis of fructose-2,6-bisphosphate during glycolysis. Inhibition of RSK reduced PFKFB2 activity and glycolytic flux in melanoma cells, suggesting an important role for RSK in BRAF-mediated metabolic rewiring. Consistent with this, expression of a phosphorylation-deficient mutant of PFKFB2 decreased aerobic glycolysis and reduced the growth of melanoma in mice. Together, these results indicate that RSK-mediated phosphorylation of PFKFB2 plays a key role in the metabolism and growth of BRAF-mutated melanomas.Significance: RSK promotes glycolytic metabolism and the growth of BRAF-mutated melanoma by driving phosphorylation of an important glycolytic enzyme. Cancer Res; 78(9); 2191-204. ©2018 AACR.


Assuntos
Melanoma/genética , Fosfofrutoquinase-2/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proliferação de Células/genética , Reprogramação Celular/genética , Glucose/metabolismo , Glicólise/genética , Células HeLa , Humanos , Melanoma/metabolismo , Melanoma/patologia , Fosforilação
11.
Mol Cell ; 67(3): 512-527.e4, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28757207

RESUMO

Aberrant signaling by the mammalian target of rapamycin (mTOR) contributes to the devastating features of cancer cells. Thus, mTOR is a critical therapeutic target and catalytic inhibitors are being investigated as anti-cancer drugs. Although mTOR inhibitors initially block cell proliferation, cell viability and migration in some cancer cells are quickly restored. Despite sustained inhibition of mTORC1/2 signaling, Akt, a kinase regulating cell survival and migration, regains phosphorylation at its regulatory sites. Mechanistically, mTORC1/2 inhibition promotes reorganization of integrin/focal adhesion kinase-mediated adhesomes, induction of IGFR/IR-dependent PI3K activation, and Akt phosphorylation via an integrin/FAK/IGFR-dependent process. This resistance mechanism contributes to xenograft tumor cell growth, which is prevented with mTOR plus IGFR inhibitors, supporting this combination as a therapeutic approach for cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Quinase 1 de Adesão Focal/metabolismo , Melanoma/tratamento farmacológico , Complexos Multiproteicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptores de Somatomedina/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal/genética , Humanos , Integrina alfa2/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Melanoma/enzimologia , Melanoma/patologia , Camundongos Nus , Complexos Multiproteicos/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cell Rep ; 18(9): 2088-2095, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249155

RESUMO

Genetic S6K1 inactivation can induce apoptosis in PTEN-deficient cells. We analyzed the therapeutic potential of S6K1 inhibitors in PTEN-deficient T cell leukemia and glioblastoma. Results revealed that the S6K1 inhibitor LY-2779964 was relatively ineffective as a single agent, while S6K1-targeting AD80 induced cytotoxicity selectively in PTEN-deficient cells. In vivo, AD80 rescued 50% of mice transplanted with PTEN-deficient leukemia cells. Cells surviving LY-2779964 treatment exhibited inhibitor-induced S6K1 phosphorylation due to increased mTOR-S6K1 co-association, which primed the rapid recovery of S6K1 signaling. In contrast, AD80 avoided S6K1 phosphorylation and mTOR co-association, resulting in durable suppression of S6K1-induced signaling and protein synthesis. Kinome analysis revealed that AD80 coordinately inhibits S6K1 together with the TAM family tyrosine kinase AXL. TAM suppression by BMS-777607 or genetic knockdown potentiated cytotoxic responses to LY-2779964 in PTEN-deficient glioblastoma cells. These results reveal that combination targeting of S6K1 and TAMs is a potential strategy for treatment of PTEN-deficient malignancy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/deficiência , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Aminopiridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Leucemia de Células T/tratamento farmacológico , Leucemia de Células T/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Piridonas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
13.
Cancer Res ; 76(16): 4816-27, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197195

RESUMO

mTORC1 is a central signaling node in controlling cell growth, proliferation, and metabolism that is aberrantly activated in cancers and certain cancer-associated genetic disorders, such as tuberous sclerosis complex (TSC) and sporadic lymphangioleiomyomatosis. However, while mTORC1-inhibitory compounds (rapamycin and rapalogs) attracted interest as candidate therapeutics, clinical trials have not replicated the promising findings in preclinical models, perhaps because these compounds tend to limit cell proliferation without inducing cell death. In seeking to address this issue, we performed a high-throughput screen for small molecules that could heighten the cytotoxicity of mTORC1 inhibitors. Here we report the discovery that combining inhibitors of mTORC1 and glutamate cysteine ligase (GCLC) can selectively and efficiently trigger apoptosis in Tsc2-deficient cells but not wild-type cells. Mechanistic investigations revealed that coinhibition of mTORC1 and GCLC decreased the level of the intracellular thiol antioxidant glutathione (GSH), thereby increasing levels of reactive oxygen species, which we determined to mediate cell death in Tsc2-deficient cells. Our findings offer preclinical proof of concept for a strategy to selectively increase the cytotoxicity of mTORC1 inhibitors as a therapy to eradicate tumor cells marked by high mTORC1 signaling, based on cotargeting a GSH-controlled oxidative stress pathway. Cancer Res; 76(16); 4816-27. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Complexos Multiproteicos/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Ensaios de Triagem em Larga Escala , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos SCID , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Espécies Reativas de Oxigênio , Sirolimo/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
14.
Mol Cell ; 59(3): 382-98, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26190261

RESUMO

Insufficient nutrients disrupt physiological homeostasis, resulting in diseases and even death. Considering the physiological and pathological consequences of this metabolic stress, the adaptive responses that cells utilize under this condition are of great interest. We show that under low-glucose conditions, cells initiate adaptation followed by apoptosis responses using PERK/Akt and MEK1/ERK2 signaling, respectively. For adaptation, cells engage the ER stress-induced unfolded protein response, which results in PERK/Akt activation and cell survival. Sustained and extreme energetic stress promotes a switch to isoform-specific MEK1/ERK2 signaling, induction of GCN2/eIF2α phosphorylation, and ATF4 expression, which overrides PERK/Akt-mediated adaptation and induces apoptosis through ATF4-dependent expression of pro-apoptotic factors including Bid and Trb3. ERK2 activation during metabolic stress contributes to changes in TCA cycle and amino acid metabolism, and cell death, which is suppressed by glutamate and α-ketoglutarate supplementation. Taken together, our results reveal promising targets to protect cells or tissues from metabolic stress.


Assuntos
Glucose/farmacologia , Ácido Glutâmico/farmacologia , Ácidos Cetoglutáricos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Estresse Fisiológico/efeitos dos fármacos
15.
Curr Biol ; 24(19): 2274-80, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25220053

RESUMO

Growth-promoting signaling molecules, including the mammalian target of rapamycin complex 1 (mTORC1), drive the metabolic reprogramming of cancer cells required to support their biosynthetic needs for rapid growth and proliferation. Glutamine is catabolyzed to α-ketoglutarate (αKG), a tricarboxylic acid (TCA) cycle intermediate, through two deamination reactions, the first requiring glutaminase (GLS) to generate glutamate and the second occurring via glutamate dehydrogenase (GDH) or transaminases. Activation of the mTORC1 pathway has been shown previously to promote the anaplerotic entry of glutamine to the TCA cycle via GDH. Moreover, mTORC1 activation also stimulates the uptake of glutamine, but the mechanism is unknown. It is generally thought that rates of glutamine utilization are limited by mitochondrial uptake via GLS, suggesting that, in addition to GDH, mTORC1 could regulate GLS. Here we demonstrate that mTORC1 positively regulates GLS and glutamine flux through this enzyme. We show that mTORC1 controls GLS levels through the S6K1-dependent regulation of c-Myc (Myc). Molecularly, S6K1 enhances Myc translation efficiency by modulating the phosphorylation of eukaryotic initiation factor eIF4B, which is critical to unwind its structured 5' untranslated region (5'UTR). Finally, our data show that the pharmacological inhibition of GLS is a promising target in pancreatic cancers expressing low levels of PTEN.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores de Iniciação em Eucariotos/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Fatores de Transcrição/genética , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Mitocôndrias/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
16.
Cancer Res ; 74(1): 201-11, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24247720

RESUMO

Deregulation of translation initiation factors contributes to many pathogenic conditions, including cancer. Here, we report the definition of a novel regulatory pathway for translational initiation with possible therapeutic import in cancer. Specifically, we found that casein kinase 1ε (CK1ε) is highly expressed in breast tumors and plays a critical role in cancer cell proliferation by controlling mRNA translation. Eukaryotic translation initiation factor eIF4E, an essential component of the translation initiation complex eIF4F, is downregulated by binding the negative-acting factor 4E-BP1. We found that genetic or pharmacologic inhibition of CK1ε attenuated 4E-BP1 phosphorylation, thereby increasing 4E-BP1 binding to eIF4E and inhibiting mRNA translation. Mechanistic investigations showed that CK1ε interacted with and phosphorylated 4E-BP1 at two novel sites T41 and T50, which were essential for 4E-BP1 inactivation along with increased mRNA translation and cell proliferation. In summary, our work identified CK1ε as a pivotal regulator of mRNA translation and cell proliferation that acts by inhibiting 4E-BP1 function. As CK1ε is highly expressed in breast tumors, these findings offer an initial rationale to explore CK1ε blockade as a therapeutic strategy to treat cancers driven by deregulated mRNA translation.


Assuntos
Neoplasias da Mama/enzimologia , Caseína Quinase 1 épsilon/metabolismo , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Morte Celular/genética , Morte Celular/fisiologia , Processos de Crescimento Celular/genética , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , RNA Mensageiro/genética
17.
Curr Biol ; 23(19): R880-3, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24112984

RESUMO

The mechanism of action of the mTOR inhibitor rapamycin is poorly understood and why certain mTORC1 phosphorylation sites are rapamycin insensitive remains elusive. Site-specific analysis of mTORC1 substrates now suggests that the sequence composition of a phosphorylation site determines whether it is sensitive to rapamycin and starvation.


Assuntos
Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos
18.
PLoS One ; 8(7): e66121, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874387

RESUMO

Multiple Myeloma (MM) is an incurable plasma cell cancer that is caused by several chromosomal translocations and gene deletions. Although deregulation of several signaling pathways including the Nuclear Factor-Kappa B (NF-κB) pathway has been reported in MM, the molecular requirement and the crosstalk between NF-κB and its target genes in MM cell survival has been largely unclear. Here, we report that Yin Yang1 (YY1), a target gene for NF-κB, is hyperexpressed in most MM tumor cells obtained from human patients, exhibits constitutive nuclear localization, and is essential for survival of MM cells. Mechanistically, we report a novel YY1-RelA complex formation, which is essential to transcriptionally repress a proapoptotic gene Bim. In line with this, depletion of YY1 or RelA resulted in elevated levels of Bim and apoptosis. Moreover, both YY1 and RelA are recruited to the Bim promoter and are required to repress the Bim promoter. Importantly, depletion of YY1 or RelA almost completely impaired the colony forming ability of MM progenitor cells suggesting that both RelA and YY1 are essential for the survival and growth of MM progenitor cells. Moreover, depletion of either YY1 or RelA completely inhibited MM tumor growth in xenograft models for human myeloma. Thus, a novel RelA-YY1 transcriptional repression complex is an attractive drug target in MM.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proliferação de Células , Proteínas de Membrana/genética , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Fator de Transcrição RelA/fisiologia , Fator de Transcrição YY1/fisiologia , Animais , Proteína 11 Semelhante a Bcl-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Mieloma Múltiplo/genética , Complexos Multiproteicos/fisiologia , RNA Interferente Pequeno/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Am J Physiol Cell Physiol ; 303(7): C743-56, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22855295

RESUMO

Vascular morphogenesis is a key process for development, reproduction, and pathogenesis. Thus understanding the mechanisms of this process is of pathophysiological importance. Despite the fact that collagen I is the most abundant and potent promorphogenic molecule known, the molecular mechanisms by which this protein regulates endothelial cell tube morphogenesis are still unclear. Here we provide strong evidence that collagen I induces tube morphogenesis by inhibiting glycogen synthase kinase 3ß (GSK3ß). Further mechanistic studies revealed that GSK3ß activity is regulated by protein kinase D (PKD). PKD inhibited GSK3ß activity, which was required for collagen I-induced endothelial tube morphogenesis. We also found that GSK3ß regulated trafficking of integrin α(2)ß(1) in a Rab11-dependent manner. Taken together, our studies highlight the important role of PKD in the regulation of collagen I-induced vascular morphogenesis and show that it is mediated by the modulation of GSK3ß activity and integrin α(2)ß(1) trafficking.


Assuntos
Células Endoteliais/enzimologia , Quinase 3 da Glicogênio Sintase/fisiologia , Integrina alfa2beta1/fisiologia , Morfogênese/fisiologia , Proteína Quinase C/fisiologia , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Transporte Proteico/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...