Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol Ther (Seoul) ; 31(6): 599-610, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37183002

RESUMO

According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.

2.
Biomed Pharmacother ; 162: 114716, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086509

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) exhibits a pronounced extracellular matrix (ECM)-rich response, which is produced by an excessive amount of transforming growth factor ß (TGF-ß), resulting in tumor progression and metastasis. In addition, TGF-ß signaling contributes to rapidly acquired resistance and incomplete response to gemcitabine. Recently, selective inhibitors of the TGF-ß signaling pathway have shown promise in PDAC treatment, particularly as an option for augmenting responses to chemotherapy. Here, we investigated the synergistic anticancer effects of a small-molecule TGF-ß receptor I kinase inhibitor (vactosertib/EW-7197) in the presence of gemcitabine, and its mechanism of action in pancreatic cancer. Vactosertib sensitized pancreatic cancer cells to gemcitabine by synergistically inhibiting their viability. Importantly, the combination of vactosertib and gemcitabine significantly attenuated the expression of major ECM components, including collagens, fibronectin, and α-SMA, in pancreatic cancer compared with gemcitabine alone. This resulted in potent induction of mitochondrial-mediated apoptosis, gemcitabine-mediated cytotoxicity, and inhibition of tumor ECM by vactosertib. Additionally, the combination decreased metastasis through inhibition of migration and invasion, and exhibited synergistic anti-cancer activity by inhibiting the TGF-ß/Smad2 pathway in pancreatic cancer cells. Furthermore, co-treatment significantly suppressed tumor growth in orthotopic models. Therefore, our findings demonstrate that vactosertib synergistically increased the antitumor activity of gemcitabine via inhibition of ECM component production by inhibiting the TGF-ß/Smad2 signaling pathway. This suggests that the combination of vactosertib and gemcitabine may be a potential treatment option for patients with pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Desoxicitidina/farmacologia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas
3.
Am J Cancer Res ; 12(9): 4326-4342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225647

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an extracellular matrix (ECM)-rich carcinoma, which promotes chemoresistance by inhibiting drug diffusion into the tumor. Discoidin domain receptor 1 (DDR1) increases tumor progression and drug resistance by binding to collagen, a major component of tumor ECM. Therefore, DDR1 inhibition may be helpful in cancer therapeutics by increasing drug delivery efficiency and improving drug sensitivity. In this study, we developed a novel DDR1 inhibitor, KI-301690 and investigated whether it could improve the anticancer activity of gemcitabine, a cytotoxic agent widely used for the treatment of pancreatic cancer. KI-301690 synergized with gemcitabine to suppress the growth of pancreatic cancer cells. Importantly, its combination significantly attenuated the expression of major tumor ECM components including collagen, fibronectin, and vimentin compared to gemcitabine alone. Additionally, this combination effectively decreased mitochondrial membrane potential (MMP), thereby inducing apoptosis. Further, the combination synergistically inhibited cell migration and invasion. The enhanced anticancer efficacy of the co-treatment could be explained by the inhibition of DDR1/PYK2/FAK signaling, which significantly reduced tumor growth in a pancreatic xenograft model. Our results demonstrate that KI-301690 can inhibit aberrant ECM expression by DDR1/PYK2/FAK signaling pathway blockade and attenuation of ECM-induced chemoresistance observed in desmoplastic pancreatic tumors, resulting in enhanced antitumor effect through effective induction of gemcitabine apoptosis.

4.
Am J Cancer Res ; 12(7): 3083-3098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968350

RESUMO

The use of anesthetics in the surgical resection of tumors may influence the prognosis of cancer patients. Lidocaine, a local anesthetic, is known to act as a chemosensitizer and relieve pain in some cancers. In addition, palbociclib, a potent cyclin-dependent kinase (CDK) 4/6 inhibitor, has been approved for chemotherapy of advanced breast cancer. However, recent studies have revealed the acquired resistance of breast cancer cells to palbociclib. Therefore, the development of combination therapies that can extend the efficacy of palbociclib or delay resistance is crucial. This study investigated whether lidocaine would enhance the efficacy of palbociclib in breast cancer. Lidocaine synergistically suppressed the growth and proliferation of breast cancer cells by palbociclib. The combination treatment showed an increased cell cycle arrest in the G0/G1 phase by decreasing retinoblastoma protein (Rb) and E2F1 expression. In addition, it increased apoptosis by loss of mitochondrial membrane potential as observed by increases in cytochrome c release and inhibition of mitochondria-mediated protein expression. Additionally, it significantly reduced epithelial-mesenchymal transition and PI3K/AKT/GSK3ß signaling. In orthotopic breast cancer models, this combination treatment significantly inhibited tumor growth and increased tumor cell apoptosis compared to those treated with a single drug. Taken together, this study demonstrates that the combination of palbociclib and lidocaine has a synergistic anti-cancer effect on breast cancer cells by the inhibition of the PI3K/AKT/GSK3ß pathway, suggesting that this combination could potentially be an effective therapy for breast cancer.

5.
Sci Rep ; 12(1): 8620, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597800

RESUMO

Stem cells are attractive candidates for the regeneration of tissue and organ. Mesenchymal stem cells (MSCs) have been extensively investigated for their potential applications in regenerative medicine and cell therapy. For developing effective stem cell therapy, the mass production of consistent quality cells is required. The cell culture medium is the most critical aspect of the mass production of qualified stem cells. Classically, fetal bovine serum (FBS) has been used as a culture supplement for MSCs. Due to the undefined and heterologous composition of animal origin components in FBS, efforts to replace animal-derived components with non-animal-derived substances led to safe serum free media (SFM). Adipose derived mesenchymal stem cells (ADSCs) cultivated in SFM provided a more stable population doubling time (PDT) to later passage and more cells in a shorter time compared to FBS containing media. ADSCs cultivated in SFM had lower cellular senescence, lower immunogenicity, and higher genetic stability than ADSCs cultivated in FBS containing media. Differential expression analysis of mRNAs and proteins showed that the expression of genes related with apoptosis, immune response, and inflammatory response were significantly up-regulated in ADSCs cultivated in FBS containing media. ADSCs cultivated in SFM showed similar therapeutic efficacy in an acute pancreatitis mouse model to ADSCs cultivated in FBS containing media. Consideration of clinical trials, not only pre-clinical trial, suggests that cultivation of MSCs using SFM might offer more safe cell therapeutics as well as repeated administration due to low immunogenicity.


Assuntos
Células-Tronco Mesenquimais , Pancreatite , Doença Aguda , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Meios de Cultura , Meios de Cultura Livres de Soro , Camundongos , Soro
6.
Biomol Ther (Seoul) ; 30(3): 274-283, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34663758

RESUMO

KRAS activating mutations, which are present in more than 90% of pancreatic cancers, drive tumor dependency on the RAS/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Therefore, combined targeting of RAS/MAPK and PI3K/AKT signaling pathways may be required for optimal therapeutic effect in pancreatic cancer. However, the therapeutic efficacy of combined MAPK and PI3K/AKT signaling target inhibitors is unsatisfactory in pancreatic cancer treatment, because it is often accompanied by MAPK pathway reactivation by PI3K/AKT inhibitor. Therefore, we developed an inRas37 antibody, which directly targets the intra-cellularly activated GTP-bound form of oncogenic RAS mutation and investigated its synergistic effect in the presence of the PI3K inhibitor BEZ-235 in pancreatic cancer. In this study, inRas37 remarkably increased the drug response of BEZ-235 to pancreatic cancer cells by inhibiting MAPK reactivation. Moreover, the co-treatment synergistically inhibited cell proliferation, migration, and invasion and exhibited synergistic anticancer activity by inhibiting the MAPK and PI3K pathways. The combined administration of inRas37and BEZ-235 significantly inhibited tumor growth in mouse models. Our results demonstrated that inRas37 synergistically increased the antitumor activity of BEZ-235 by inhibiting MAPK reactivation, suggesting that inRas37 and BEZ-235 co-treatment could be a potential treatment approach for pancreatic cancer patients with KRAS mutations.

7.
Cancer Lett ; 507: 97-111, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744388

RESUMO

KRAS mutation is associated with the progression and growth of pancreatic cancer and contributes to chemo-resistance, which poses a significant clinical challenge in pancreatic cancer. Here, we developed a RT22-ep59 antibody (Ab) that directly targets the intracellularly activated GTP-bound form of oncogenic KRAS mutants after it is internalized into cytosol by endocytosis through tumor-associated receptor of extracellular epithelial cell adhesion molecule (EpCAM) and investigated its synergistic anticancer effects in the presence of gemcitabine in pancreatic cancer. We first observed that RT22-ep59 specifically recognized tumor-associated EpCAM and reached the cytosol by endosomal escape. In addition, the anticancer effect of RT22-ep59 was observed in the high-EpCAM-expressing pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells, but it had little effect on the low-EpCAM-expressing pancreatic cancer cells. Additionally, co-treatment with RT22-ep59 and gemcitabine synergistically inhibited cell viability, migration, and invasion in 3D-cultures and exhibited synergistic anticancer activity by inhibiting the RAF/ERK or PI3K/AKT pathways in cells with high-EpCAM expression. In an orthotopic mouse model, combined administration of RT22-ep59 and gemcitabine significantly inhibited tumor growth. Furthermore, the co-treatment suppressed cancer metastasis by blocking EMT signaling in vitro and in vivo. Our results demonstrated that RT22-ep59 synergistically increased the antitumor activity of gemcitabine by inhibiting RAS signaling by specifically targeting KRAS. This indicates that co-treatment with RT22-ep59 and gemcitabine might be considered a potential therapeutic strategy for pancreatic cancer patients harboring KRAS mutation.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Endossomos/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Endocitose , Endossomos/genética , Molécula de Adesão da Célula Epitelial/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
8.
EMBO Mol Med ; 12(8): e11222, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638512

RESUMO

Pancreatitis is the inflammation of the pancreas. However, little is known about the genes associated with pancreatitis severity. Our microarray analysis of pancreatic tissues from mild and severe acute pancreatitis mice models identified angiopoietin-like 4 (ANGPTL4) as one of the most significantly upregulated genes. Clinically, ANGPTL4 expression was also increased in the serum and pancreatic tissues of pancreatitis patients. The deficiency in ANGPTL4 in mice, either by gene deletion or neutralizing antibody, mitigated pancreatitis-associated pathological outcomes. Conversely, exogenous ANGPTL4 exacerbated pancreatic injury with elevated cytokine levels and apoptotic cell death. High ANGPTL4 enhanced macrophage activation and infiltration into the pancreas, which increased complement component 5a (C5a) level through PI3K/AKT signaling. The activation of the C5a receptor led to hypercytokinemia that accelerated acinar cell damage and furthered pancreatitis. Indeed, C5a neutralizing antibody decreased inflammatory response in LPS-activated macrophages and alleviated pancreatitis severity. In agreement, there was a significant positive correlation between C5a and ANGPTL4 levels in pancreatitis patients. Taken together, our study suggests that targeting ANGPTL4 is a potential strategy for the treatment of pancreatitis.


Assuntos
Pancreatite , Células Acinares , Doença Aguda , Proteína 4 Semelhante a Angiopoietina/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas , Fosfatidilinositol 3-Quinases , Regulação para Cima
9.
Biomol Ther (Seoul) ; 28(6): 527-536, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32451370

RESUMO

Liver fibrosis constitutes a significant health problem worldwide due to its rapidly increasing prevalence and the absence of specific and effective treatments. Growing evidence suggests that apoptosis-signal regulating kinase 1 (ASK1) is activated in oxidative stress, which causes hepatic inflammation and apoptosis, leading to liver fibrogenesis through a mitogen-activated protein kinase (MAPK) downstream signals. In this study, we investigated whether selonsertib, a selective inhibitor of ASK1, shows therapeutic efficacy for liver fibrosis, and elucidated its mechanism of action in vivo and in vitro. As a result, selonsertib strongly suppressed the growth and proliferation of hepatic stellate cells (HSCs) and induced apoptosis by increasing Annexin V and TUNEL-positive cells. We also observed that selonsertib inhibited the ASK1/MAPK pathway, including p38 and c-Jun N-terminal kinase (JNK) in HSCs. Interestingly, dimethylnitrosamine (DMN)-induced liver fibrosis was significantly alleviated by selonsertib treatment in rats. Furthermore, selonsertib reduced collagen deposition and the expression of extracellular components such as α-smooth muscle actin (α-SMA), fibronectin, and collagen type I in vitro and in vivo. Taken together, selonsertib suppressed fibrotic response such as HSC proliferation and extracellular matrix components by blocking the ASK1/MAPK pathway. Therefore, we suggest that selonsertib may be an effective therapeutic drug for ameliorating liver fibrosis.

10.
Cancer Lett ; 444: 94-104, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30583075

RESUMO

Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting kinase 3 (RIP3). Recently, necroptosis has gained attention as a novel alternative therapy to target cancer cells. In this study, we screened several chemotherapeutics used in preclinical and clinical studies, and identified a drug HS-173 that induces RIP3-mediated necroptosis. HS-173 decreased the cell survival in a dose-dependent manner in RIP3-expressing lung cancer cells, compared to the cells lacking RIP3. Also, the cell death induced by HS-173 was rescued by specific necroptosis inhibitors such as necrostatin-1 and dabrafenib. Additionally, HS-173 increased the phosphorylation of RIP3 and MLKL, which was decreased by necroptosis inhibitors, indicating that HS-173 activates RIP3/MLKL signaling in lung cancer cells. HS-173 increased the necroptotic events, as observed by the increased levels of HMGB1 and necroptotic morphological features. Furthermore, HS-173 inhibited the tumor growth by stimulation of necroptosis in mouse xenograft models. Our findings offer new insights into the role of HS-173 in inducing necroptosis by enhancing RIP3 expression and activating the RIP3/MLKL signaling pathway in lung cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Necrose , Piridinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Sulfonamidas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...