Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Meas Tech ; 12(11): 6241-6258, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33414857

RESUMO

The Cloud-Aerosol Transport System (CATS) lidar on board the International Space Station (ISS) operated from 10 February 2015 to 30 October 2017 providing range-resolved vertical backscatter profiles of Earth's atmosphere at 1064 and 532 nm. The CATS instrument design and ISS orbit lead to a higher 1064 nm signal-to-noise ratio than previous space-based lidars, allowing for direct atmospheric calibration of the 1064 nm signals. Nighttime CATS Version 3-00 data were calibrated by scaling the measured data to a model of the expected atmospheric backscatter between 22 and 26 km above mean sea level (AMSL). The CATS atmospheric model is constructed using molecular backscatter profiles derived from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) re-analysis data and aerosol scattering ratios measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The nighttime normalization altitude region was chosen to simultaneously minimize aerosol loading and variability within the CATS data frame, which extends from 28 km to -2 km AMSL. Daytime CATS Version 3-00 data were calibrated through comparisons with nighttime measurements of the layer integrated attenuated total backscatter (iATB) from strongly scattering, rapidly attenuating opaque cirrus clouds. The CATS nighttime 1064 nm attenuated total backscatter (ATB) uncertainties for clouds and aerosols are primarily related to the uncertainties in the CATS nighttime calibration technique, which are estimated to be ~9%. Median CATS V3-00 1064 nm ATB relative uncertainty at night within cloud and aerosol layers is 7%, slightly lower than these calibration uncertainty estimates. CATS median daytime 1064 nm ATB relative uncertainty is 21% in cloud and aerosol layers, similar to the estimated 16-18% uncertainty in the CATS daytime cirrus cloud calibration transfer technique. Coincident daytime comparisons between CATS and the Cloud Physics Lidar (CPL) during the CATS-CALIPSO Airborne Validation Experiment (CCAVE) project show good agreement in mean ATB profiles for clear-air regions. Eight nighttime comparisons between CATS and the PollyXT ground based lidars also show good agreement in clear-air regions between 3-12 km, with CATS having a mean ATB of 19.7 % lower than PollyXT. Agreement between the two instruments (~7%) is even better within an aerosol layer. Six-month comparisons of nighttime ATB values between CATS and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) also show that iATB comparisons of opaque cirrus clouds agree to within 19%. Overall, CATS has demonstrated that direct calibration of the 1064 nm channel is possible from a space based lidar using the atmospheric normalization technique.

2.
Geophys Res Lett ; Volume 44(Iss 11): 5818-5825, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32020959

RESUMO

From June to October, low-level clouds in the Southeast (SE) Atlantic often underlie seasonal aerosol layers transported from African continent. Previously, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 532 nm lidar observations have been used to estimate the relative vertical location of the above-cloud aerosols (ACA) to the underlying clouds. Here, we show new observations from NASA's Cloud-Aerosol Transport System (CATS) lidar. Two seasons of CATS 1064 nm observations reveal that the bottom of the ACA layer is much lower than previously estimated based on CALIPSO 532nm observations. For about 60% of CATS nighttime ACA scenes, the aerosol layer base is within 360 m distance to the top of the underlying cloud. Our results are important for future studies of the microphysical indirect and semi-direct effects of ACA in the SE Atlantic region.

3.
Geophys Res Lett ; 43(16): 8783-8790, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30002565

RESUMO

We demonstrate that multi-angle polarization measurements in the near-UV and blue part of the spectrum are very well suited for passive remote sensing of aerosol layer height. For this purpose we use simulated measurements with different set-ups (different wavelength ranges, with and without polarization, different polarimetric accuracies) as well as airborne measurements from the Research Scanning Polarimeter (RSP) obtained over the continental USA. We find good agreement of the retrieved aerosol layer height from RSP with measurements from the Cloud Physics Lidar (CPL) showing a mean absolute difference of less than 1 km. Furthermore, we found that the information on aerosol layer height is provided for large part by the multi-angle polarization measurements with high accuracy rather than the multi-angle intensity measurements. The information on aerosol layer height is significantly decreased when the shortest RSP wavelength (410 nm) is excluded from the retrieval and is virtually absent when 550 nm is used as shortest wavelength.

4.
Geophys Res Lett ; 43(9): 4586-4593, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29618850

RESUMO

A novel technique is used to estimate derivatives of ice effective radius with respect to height near convective cloud tops (dre /dz) from airborne shortwave reflectance measurements and lidar. Values of dre /dz are about -6 µm/km for cloud tops below the homogeneous freezing level, increasing to near 0 µm/km above the estimated level of neutral buoyancy. Retrieved dre /dz compares well with previously documented remote sensing and in situ estimates. Effective radii decrease with increasing cloud top height, while cloud top extinction increases. This is consistent with weaker size sorting in high, dense cloud tops above the level of neutral buoyancy where fewer large particles are present, and with stronger size sorting in lower cloud tops that are less dense. The results also confirm that cloud-top trends of effective radius can generally be used as surrogates for trends with height within convective cloud tops. These results provide valuable observational targets for model evaluation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...