Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591619

RESUMO

Common walkingstick (Diapheromera femorata) aqueous extract (CWSAE) can induce the synthesis of useful bionanomaterials. CWSAE is rich in water-soluble organic compounds such as proteins and polypeptides that function as reducing/stabilizing agents for nanoparticle formation from Ag+ ion precursors. The synthesized AgNPs exhibited a moderately uniform size, with the majority falling within the range of 20-80 nm. These AgNPs were UV-treated and tested as antibacterial agents to inhibit the growth of four pathogenic bacteria (Burkholderia cenocepacia K-56, Klebsiella pneumoniae ST258, Pseudomonas aeruginosa PAO1, and Staphylococcus aureus USA300), as well as one common bacterium (Escherichia coli BW25113). The disk diffusion test demonstrated that the UV-treated AgNPs significantly and selectively inhibited the growth of Staphylococcus aureus USA300 and P. aeruginosa, while showing a small effect on the other two species. This suggests the potential application of green-chemically synthesized AgNPs as selective antibacterial agents. Furthermore, we studied the effects of short-term (1-2 min) and long-term (5-30 min) UV treatment on the selective cytotoxicity of the AgNPs and found that the cytotoxicity of the AgNPs could depend on the duration of UV exposure against certain bacteria.

2.
Materials (Basel) ; 16(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903235

RESUMO

Modern technological development has made the designing and characterization of materials sophisticated [...].

3.
Materials (Basel) ; 15(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36143642

RESUMO

This paper deals with a non-destructive analysis of residual stress through the visualization of deformation behaviors induced by a local spot heating. Deformation was applied to the surface of an aluminum alloy with an infrared spot laser. The heating process is non-contact, and the applied strain is reversible in the range of room temperature to approximately +10 °C. The specimen was initially pulled up to elastic tensile stress using a tensile test machine under the assumption that the material was subject to the tensile residual stress. The relaxation behaviors of the applied strain under tensile stress conditions were evaluated using contact and non-contact methods, i.e., two strain gauges (the contact method) and a two-dimensional electronic speckle pattern interferometer (non-contact method). The results are discussed based on the stress dependencies of the thermal expansion coefficient and the elasticity of the materials.

4.
Materials (Basel) ; 15(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269075

RESUMO

Using speckle patterns formed by an expanded and collimated He-Ne laser beam, we apply DIC (Digital Image Correlation) methods to estimate the deformation of LLDPE (linear low-density polyethylene) film. The laser beam was transmitted through the film specimen while a tensile machine applied a load to the specimen vertically. The transmitted laser light was projected on a screen, and the resultant image was captured by a digital camera. The captured image was analyzed both in space and frequency domains. For the space-domain analysis, the random speckle pattern was used to register the local displacement due to the deformation. For the frequency-domain analysis, the diffraction-like pattern, due to the horizontally-running, periodic groove-like structure of the film was used to characterize the overall deformation along vertical columns of analysis. It has been found that when the deformation is small and uniform, the conventional space domain analysis is applicable to the entire film specimen. However, once the deformation loses the spatial uniformity, the space-domain analysis falls short if applied to the entire specimen. The application of DIC to local (windowed) regions is still useful but time consuming. In the non-uniform situation, the frequency-domain analysis is found capable of revealing average deformation along each column of analysis.

5.
Materials (Basel) ; 14(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804797

RESUMO

The deformation and fracture mechanism in 7075 aluminum alloy is discussed based on a field theoretical approach. A pair of peak-aged and overaged plate specimens are prepared under the respective precipitation conditions, and their plastic deformation behaviors are visualized with two-dimensional electronic speckle pattern interferometry (ESPI). The in-plane velocity field caused by monotonic tensile loading is monitored continuously via the contour analysis method of ESPI. In the plastic regime, the peak-aged specimen exhibits a macroscopically uniform deformation behavior, while the annealed specimen exhibits non-uniform deformation characterized by a localized shear band. The occurrence of the shear band is explained by the transition of the material's elastic resistive mechanism from the longitudinal force dominant to shear force dominant mode. The shear force is interpreted as the frictional force that drives mobile dislocations along the shear band. The dynamic behavior of the shear band is explained as representing the motion of a solitary wave. The observed decrease in the solitary wave's velocity is accounted for by the change in the acoustic impedance with the advancement of plastic deformation.

6.
Materials (Basel) ; 13(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192192

RESUMO

A method to diagnose the deformation status of solid objects under loading is discussed. The present method is based on a recent field theory of deformation and fracture and optical interferometry known as the Electronic Speckle-Pattern Interferometry (ESPI). Using one of the most fundamental principles of physics referred to as symmetry in physics, this field theory formulates all stages of deformation and fracture on the same theoretical basis. In accordance with the formalism, the theory has defined the criteria for different stages of deformation (linear elastic, plastic and fracturing stages) expressed by certain spatiotemporal features of the differential displacement (the displacement occurring during a small time interval). The ESPI is used to visualize the differential displacement field of a specimen as two-dimensional, full-field interferometric fringe patterns. This paper reports experimental evidence that demonstrates the usefulness of the present method. A tensile load is applied to an aluminum-alloy plate specimen at a constant pulling rate and the resultant in-plane displacement field is visualized with a two-dimensional ESPI setup. The differential displacement field is obtained at each time step and the interferometric fringe patterns are interpreted based on the criterion for each stage of deformation. It has been found that the criteria of linear elastic deformation, plastic deformation and fracturing stage are clearly observed in the corresponding fringe patterns and that the observations are consistent with the loading characteristics.

7.
Materials (Basel) ; 12(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835611

RESUMO

This paper discusses a non-destructive measurement technique of residual stress through optical visualization. The least amount of deformation possible is applied to steel plates by heating the specimens +10 °C from room temperature for initial calibration, and the thermal expansion behavior is visualized with an electronic speckle pattern interferometer sensitive to two dimensional in-plane displacement. Displacement distribution with the thermal deformation and coefficient of thermal expansion are obtained through interferometric fringe analysis. The results suggest the change in the thermal deformation behavior is affected by the external stress initially applied to the steel specimen. Additionally, dissimilar joints of steel and cemented carbide plates are prepared by butt-brazing. The residual stress is estimated based on the stress dependence of thermal expansion coefficient.

8.
Ultrasonics ; 76: 166-176, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28103485

RESUMO

We applied scanning acoustic microscopy known as the V(z) curve technique to photoresist thin-film systems for the evaluation of the adhesive strength at the film-substrate interface. Through the measurement of the SAW (Surface Acoustic Wave) velocity, the V(z) curve analysis allows us to quantify the stiffness of the film-substrate interface. In addition, we conducted a nano-scratch test to quantify the ultimate strength of the adhesion through the evaluation of the critical load. To vary the adhesive conditions, we prepared thin-film specimens with three different types of pre-coating surface treatments, i.e., oxygen-plasma bombardment, HMDS (Hexametyldisilazane) treatment and untreated. The magnitudes of the quantified stiffness and ultimate strength are found consistent with each other for all the specimens tested, indicating that the pre-coating surface treatment can strengthen both the stiffness and ultimate strength of the adhesion. The results of this study demonstrate the usefulness of the V(Z) analysis as a nondestructive method to evaluate the adhesion strength of nano-structured thin-film systems.

9.
Ultrasonics ; 67: 9-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26773788

RESUMO

This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints.

10.
Materials (Basel) ; 9(2)2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28787912

RESUMO

Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea.

11.
Appl Opt ; 42(24): 4835-40, 2003 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-12952327

RESUMO

We present a method for measuring absorption at the 1 x 10(-5) cm(-1) level in high-quality optical materials. Using a Shack-Hartmann wave-front detector, thermal lensing in these materials may be measured. Then, the absorption coefficient may be estimated by fitting the observed deformation to a thermal lensing model based on the temperature dependences of the refractive index and the thermal expansion coefficient. For a particular sample of fused silica, the absorption coefficient was determined to be 1.8 +/- 0.4 x 10(-5) cm(-1). Obtaining this result requires a resolution in the optical path length better than +/- 0.1 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA