Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Cardiovasc Med ; 10: 1107399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469486

RESUMO

The ferumoxytol-enhanced 4D MR angiography with MUSIC (Multiphase Steady State Imaging with Contrast) technique provides a single data set that captures dynamic cardiovascular anatomy and ventricular function at the same time. Homogeneous opacification of all cardiovascular structures within the imaging volume allows full sequential segmental approach to the congenital heart diseases without any blind spots. The complex systemic and pulmonary venous anatomy is particularly well captured in the MUSIC. Cinematographic display of multiplanar sectional and 3D volume images is helpful in the morphological identification of the cardiac chambers, the assessment of the dynamic nature of the ventricular outflow tracts, and the assessment of the coronary arterial origins and courses.

2.
Quant Imaging Med Surg ; 12(9): 4377-4389, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36060580

RESUMO

Background: Quantitative ventricular volumetry and function are important in the management of congenital heart disease (CHD). Ferumoxytol-enhanced (FE) 4D multiphase, steady state imaging with contrast enhancement (MUSIC) enables high-resolution, 3D cardiac phase-resolved magnetic resonance imaging (MRI) of the beating heart and extracardiac vessels in a single acquisition and without concerns about renal impairment. We aim to evaluate the semi-automatic quantification of ventricular volumetry and function of 4D MUSIC MRI using 2D and 3D software platforms. Methods: This HIPAA-compliant and IRB-approved study prospectively recruited 50 children with CHD (3 days to 18 years) who underwent 4D MUSIC MRI at 3.0T between 2013-2017 for clinical indications. Each patient was either intubated in the neonatal intensive care unit (NICU) or underwent general anesthesia at MRI suite. For 2D analysis, we reformatted MUSIC images in Digital Imaging and Communications in Medicine (DICOM) format into ventricular short-axis slices with zero interslice gap. For 3D analysis, we imported DICOMs into a commercially available 3D software platform. Using semi-automatic thresholding, we quantified biventricular volume and ejection fraction (EF). We assessed the bias between MUSIC-derived 2D vs. 3D measurements and correlation between MUSIC vs. conventional 2D balanced steady-state free precession (bSSFP) cine images. We evaluated intra- and inter-observer agreement. Results: There was a high degree of correlation between MUSIC-derived volumetric and functional measurements using 2D vs. 3D software (r=0.99, P<0.001). Volumes derived using 3D software platforms were larger than 2D by 0.2 to 2.0 mL/m2 whereas EF measurements were higher by 1.2-3.0%. MUSIC volumetric and functional measures derived from 2D and 3D software platforms corresponded highly with those derived from multi-slice SSFP cine images (r=0.99, P<0.001). The mean difference in volume for reformatted 4D MUSIC relative to bSSFP cine was 1.5 to 3.9 mL/m2. Intra- and inter-observer reliability was excellent. Conclusions: Accurate and reliable ventricular volumetry and function can be derived from FE 4D MUSIC MRI studies using commercially available 2D and 3D software platforms. If fully validated in multicenter studies, the FE 4D-MUSIC pulse sequence may supercede conventional multislice 2D cine cardiovascular MRI acquisition protocols for functional evaluation of children with complex CHD.

3.
Magn Reson Med ; 87(2): 984-998, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34611937

RESUMO

PURPOSE: To automate the segmentation of the peripheral arteries and veins in the lower extremities based on ferumoxytol-enhanced MR angiography (FE-MRA). METHODS: Our automated pipeline has 2 sequential stages. In the first stage, we used a 3D U-Net with local attention gates, which was trained based on a combination of the Focal Tversky loss with region mutual loss under a deep supervision mechanism to segment the vasculature from the high-resolution FE-MRA datasets. In the second stage, we used time-resolved images to separate the arteries from the veins. Because the ultimate segmentation quality of the arteries and veins relies on the performance of the first stage, we thoroughly evaluated the different aspects of the segmentation network and compared its performance in blood vessel segmentation with currently accepted state-of-the-art networks, including Volumetric-Net, DeepVesselNet-FCN, and Uception. RESULTS: We achieved a competitive F1 = 0.8087 and recall = 0.8410 for blood vessel segmentation compared with F1 = (0.7604, 0.7573, 0.7651) and recall = (0.7791, 0.7570, 0.7774) obtained with Volumetric-Net, DeepVesselNet-FCN, and Uception. For the artery and vein separation stage, we achieved F1 = (0.8274/0.7863) in the calf region, which is the most challenging region in peripheral arteries and veins segmentation. CONCLUSION: Our pipeline is capable of fully automatic vessel segmentation based on FE-MRA without need for human interaction in <4 min. This method improves upon manual segmentation by radiologists, which routinely takes several hours.


Assuntos
Óxido Ferroso-Férrico , Imageamento por Ressonância Magnética , Angiografia , Artérias/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Veias/diagnóstico por imagem
4.
Pediatr Radiol ; 52(3): 501-512, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34936018

RESUMO

BACKGROUND: Gadofosveset is a gadolinium-based blood pool contrast agent that was approved by the United States Food and Drug Administration in 2008. Its unanticipated withdrawal from production in 2016 created a void in the blood pool agent inventory and highlighted the need for an alternative agent with comparable imaging properties. OBJECTIVE: The purpose of our study is to compare the diagnostic image quality, vascular contrast-to-noise ratio (CNR) and temporal signal characteristics of gadofosveset trisodium and ferumoxytol at similar molar doses for high-resolution, three-dimensional (3-D) magnetic resonance (MR) venography in children. MATERIALS AND METHODS: The medical records and imaging data sets of patients who underwent high-resolution 3-D gadofosveset-enhanced MR venography (GE-MRV) or ferumoxytol-enhanced MR venography (FE-MRV) were retrospectively reviewed. Two groups of 20 pediatric patients (age- and weight-matched with one patient common to both groups; age range: 2 days-15 years) who underwent high-resolution 3-D GE-MRV or FE-MRV at similar molar doses were identified and analyzed. Qualitative analysis of image quality and vessel definition was performed by two blinded pediatric radiologists. Interobserver agreement was assessed with the AC1 (first-order agreement coefficient) statistic. Signal-to-noise ratio (SNR) and CNR of the inferior vena cava and aorta were measured in the steady-state venous phase. Medical records were retrospectively reviewed for any adverse reactions associated with either contrast agent. RESULTS: Measured SNR and CNR of the inferior vena cava were higher for FE-MRV than GE-MRV (P = 0.034 and P < 0.001, respectively). The overall image quality score and individual vessel scores of FE-MRV were equal to or greater than GE-MRV (P = 0.084), with good interobserver agreement (AC1 = 0.657). The venous signal on FE-MRV was stable over the longest interval measured (1 h, 13 min and 46 s), whereas venous signal on GE-MRV showed more variability and earlier loss of signal. No adverse reactions were noted in any patient with either contrast agent. CONCLUSION: Ferumoxytol produces more uniform and stable enhancement throughout the entire venous circulation in children than gadofosveset, offering a wider time window for optimal image acquisition. FE-MRV offers a near-ideal approach to high-resolution venography in children at all levels of anatomical complexity.


Assuntos
Gadolínio , Compostos Organometálicos , Criança , Pré-Escolar , Meios de Contraste , Óxido Ferroso-Férrico , Humanos , Angiografia por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Flebografia/métodos , Estudos Retrospectivos
5.
Br J Radiol ; 94(1125): 20210430, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415199

RESUMO

OBJECTIVES: To assess the feasibility of a rapid, focused ferumoxytol-enhanced MR angiography (f-FEMRA) protocol in patients with claustrophobia. METHODS: In this retrospective study, 13 patients with claustrophobia expressed reluctance to undergo conventional MR angiography, but agreed to a trial of up to 10 min in the scanner bore and underwent f-FEMRA. Thirteen matched control patients who underwent gadolinium-enhanced MR angiography (GEMRA) were identified for comparison of diagnostic image quality. For f-FEMRA, the time from localizer image acquisition to completion of the angiographic acquisition was measured. Two radiologists independently scored images on both f-FEMRA and GEMRA for arterial and venous image quality, motion artefact and diagnostic confidence using a 5-point scale, five being best. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the aorta and IVC were measured. The Wilcoxon rank-sum test, one-way ANOVA with Tukey correction and two-tailed t tests were utilized for statistical analyses. RESULTS: All scans were diagnostic and assessed with high confidence (scores ≥ 4). Average scan time for f-FEMRA was 6.27 min (range 3.56 to 10.12 min), with no significant difference between f-FEMRA and GEMRA in diagnostic confidence (4.86 ± 0.24 vs 4.69 ± 0.25, p = 0.13), arterial image quality (4.62 ± 0.57 vs 4.65 ± 0.49, p = 0.78) and motion artefact score (4.58 ± 0.49 vs 4.58 ± 0.28, p > 0.99). f-FEMRA scored significantly better for venous image quality than GEMRA (4.62 ± 0.42 vs 4.19 ± 0.56, p = 0.04). CNR in the IVC was significantly higher for steady-state f-FEMRA than GEMRA regardless of the enhancement phase (p < 0.05). CONCLUSIONS: Comprehensive vascular MR imaging of the thorax, abdomen and pelvis can be completed in as little as 5 min within the magnet bore using f-FEMRA, facilitating acceptance by patients with claustrophobia and streamlining workflow. ADVANCES IN KNOWLEDGE: A focused approach to vascular imaging with ferumoxytol can be performed in patients with claustrophobia, limiting time in the magnet bore to 10 min or less, while acquiring fully diagnostic images of the thorax, abdomen and pelvis.


Assuntos
Meios de Contraste , Óxido Ferroso-Férrico , Aumento da Imagem/métodos , Angiografia por Ressonância Magnética/métodos , Angiografia por Ressonância Magnética/psicologia , Transtornos Fóbicos/psicologia , Estudos de Coortes , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Tempo
6.
Magn Reson Med ; 86(5): 2666-2683, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34254363

RESUMO

PURPOSE: Develop a novel three-dimensional (3D) generative adversarial network (GAN)-based technique for simultaneous image reconstruction and respiratory motion compensation of 4D MRI. Our goal was to enable high-acceleration factors 10.7X-15.8X, while maintaining robust and diagnostic image quality superior to state-of-the-art self-gating (SG) compressed sensing wavelet (CS-WV) reconstruction at lower acceleration factors 3.5X-7.9X. METHODS: Our GAN was trained based on pixel-wise content loss functions, adversarial loss function, and a novel data-driven temporal aware loss function to maintain anatomical accuracy and temporal coherence. Besides image reconstruction, our network also performs respiratory motion compensation for free-breathing scans. A novel progressive growing-based strategy was adapted to make the training process possible for the proposed GAN-based structure. The proposed method was developed and thoroughly evaluated qualitatively and quantitatively based on 3D cardiac cine data from 42 patients. RESULTS: Our proposed method achieved significantly better scores in general image quality and image artifacts at 10.7X-15.8X acceleration than the SG CS-WV approach at 3.5X-7.9X acceleration (4.53 ± 0.540 vs. 3.13 ± 0.681 for general image quality, 4.12 ± 0.429 vs. 2.97 ± 0.434 for image artifacts, P < .05 for both). No spurious anatomical structures were observed in our images. The proposed method enabled similar cardiac-function quantification as conventional SG CS-WV. The proposed method achieved faster central processing unit-based image reconstruction (6 s/cardiac phase) than the SG CS-WV (312 s/cardiac phase). CONCLUSION: The proposed method showed promising potential for high-resolution (1 mm3 ) free-breathing 4D MR data acquisition with simultaneous respiratory motion compensation and fast reconstruction time.


Assuntos
Coração , Imageamento por Ressonância Magnética , Artefatos , Estudos de Viabilidade , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Movimento (Física)
7.
Radiology ; 300(1): 162-173, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33876971

RESUMO

Background The value of MRI in pediatric congenital heart disease (CHD) is well recognized; however, the requirement for expert oversight impedes its widespread use. Four-dimensional (4D) multiphase steady-state imaging with contrast enhancement (MUSIC) is a cardiovascular MRI technique that uses ferumoxytol and captures all anatomic features dynamically. Purpose To evaluate multicenter feasibility of 4D MUSIC MRI in pediatric CHD. Materials and Methods In this prospective study, participants with CHD underwent 4D MUSIC MRI at 3.0 T or 1.5 T between 2014 and 2020. From a pool of 460 total studies, an equal number of MRI studies from three sites (n = 60) was chosen for detailed analysis. With use of a five-point scale, the feasibility of 4D MUSIC was scored on the basis of artifacts, image quality, and diagnostic confidence for intracardiac and vascular connections (n = 780). Respiratory motion suppression was assessed by using the signal intensity profile. Bias between 4D MUSIC and two-dimensional (2D) cine imaging was evaluated by using Bland-Altman analysis; 4D MUSIC examination duration was compared with that of the local standard for CHD. Results A total of 206 participants with CHD underwent MRI at 3.0 T, and 254 participants underwent MRI at 1.5 T. Of the 60 MRI examinations chosen for analysis (20 per site; median participant age, 14.4 months [interquartile range, 2.3-49 months]; 33 female participants), 56 (93%) had good or excellent image quality scores across a spectrum of disease complexity (mean score ± standard deviation: 4.3 ± 0.6 for site 1, 4.9 ± 0.3 for site 2, and 4.6 ± 0.7 for site 3; P < .001). Artifact scores were inversely related to image quality (r = -0.88, P < .001) and respiratory motion suppression (P < .001, r = -0.45). Diagnostic confidence was high or definite in 730 of 780 (94%) intracardiac and vascular connections. The correlation between 4D MUSIC and 2D cine ventricular volumes and ejection fraction was high (range of r = 0.72-0.85; P < .001 for all). Compared with local standard MRI, 4D MUSIC reduced the image acquisition time (44 minutes ± 20 vs 12 minutes ± 3, respectively; P < .001). Conclusion Four-dimensional multiphase steady-state imaging with contrast enhancement MRI in pediatric congenital heart disease was feasible in a multicenter setting, shortened the examination time, and simplified the acquisition protocol, independently of disease complexity. Clinical trial registration no. NCT02752191 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Roest and Lamb in this issue.


Assuntos
Cardiopatias Congênitas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Criança , Pré-Escolar , Meios de Contraste , Estudos de Viabilidade , Feminino , Óxido Ferroso-Férrico , Humanos , Lactente , Masculino , Estudos Prospectivos
8.
World J Pediatr Congenit Heart Surg ; 11(6): 797-801, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33164685

RESUMO

BACKGROUND: Three-dimensional printing is increasingly recognized as a valuable tool for congenital heart disease (CHD) procedural planning and education. Cost and complexity currently limit the more widespread adoption of this technology. We sought to demonstrate the accuracy of 3D printed CHD models created from contrast-enhanced magnetic resonance imaging (MRI) and computed tomography (CT) scans using free software and an inexpensive desktop fused filament fabrication (FFF) printer. METHODS: Solid segmentations of the intracardiac blood pool were created with the program ITK-SNAP. Using the computer program Meshmixer, the segmentation model was hollowed to create a 0.8 mm shell with the inner surface representing endocardium. Three-dimensional models were created on an FFF printer. Four arteries and a ventricular septal defect (VSD) were 3D printed and measured for accuracy. Five models were used to assess candidacy for biventricular surgical repair and one to guide an interventional catheterization. RESULTS: All six patients underwent intervention planned with the 3D models. The computer model shell walls all achieved specifications within 0.05 mm of the designated 0.8 mm thickness and the original solid blood pool segmentation fit within the hollowed 3D model. The 3D printed arteries and VSD all measured accurately to within 0.5 mm of their source computer model. CONCLUSION: Accurate 3D printed models of complex, pediatric CHD may be created from volumetric MRI and CT studies using free online software and printed on an inexpensive desktop printer.


Assuntos
Simulação por Computador , Cardiopatias Congênitas/diagnóstico , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética/métodos , Modelos Anatômicos , Impressão Tridimensional , Tomografia Computadorizada por Raios X/métodos , Humanos , Reprodutibilidade dos Testes , Software
9.
J Vasc Surg ; 71(5): 1674-1684, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31734117

RESUMO

OBJECTIVE: The purpose of this study was to establish the feasibility of fusing complementary, high-contrast features from unenhanced computed tomography (CT) and ferumoxytol-enhanced magnetic resonance angiography (FE-MRA) for preprocedural vascular mapping in patients with renal impairment. METHODS: In this Institutional Review Board-approved and Health Insurance Portability and Accountability Act-compliant study, 15 consecutive patients underwent both FE-MRA and unenhanced CT scanning, and the complementary high-contrast features from both modalities were fused to form an integrated, multifeature image. Source images from CT and MRA were segmented and registered. To validate the accuracy, precision, and concordance of fused images to source images, unambiguous landmarks, such as wires from implantable medical devices or indwelling catheters, were marked on three-dimensional (3D) models of the respective modalities, followed by rigid co-registration, interactive fusion, and fine adjustment. We then compared the positional offsets using pacing wires or catheters in the source FE-MRA (defined as points of interest [POIs]) and fused images (n = 5 patients, n = 247 points). Points within 3D image space were referenced to the respective modalities: x (right-left), y (anterior-posterior), and z (cranial-caudal). The respective 3D orthogonal reference axes from both image sets were aligned, such that with perfect registration, a given point would have the same (x, y, z) component values in both sets. The 3D offsets (Δx mm, Δy mm, Δz mm) for each of the corresponding POIs represent nonconcordance between the source FE-MRA and fused images. The offsets were compared using concordance correlation coefficients. Interobserver agreement was assessed using intraclass correlation coefficients and Bland-Altman analyses. RESULTS: Thirteen patients (aged 76 ± 12 years; seven female) with aortic valve stenosis and chronic kidney disease and two patients with thoracoabdominal vascular aneurysms and chronic kidney disease underwent FE-MRA for preprocedural vascular assessment, and unenhanced CT examinations were available in all patients. No ferumoxytol-related adverse events occurred. There were 247 matched POIs evaluated on the source FE-MRA and fused images. In patients with implantable medical devices, the mean offsets in spatial position were 0.31 ± 0.51 mm (ρ = 0.99; Cb = 1; 95% confidence interval [CI], 0.99-0.99) for Δx, 0.27 ± 0.69 mm (ρ = 0.99; Cb = 0.99; 95% CI, 0.99-0.99) for Δy, and 0.20 ± 0.59 mm (ρ = 1; Cb = 1; 95% CI, 0.99-1.00) for Δz. Interobserver agreement was excellent (intraclass correlation coefficient, >0.99). The mean difference in offset between readers was 1.5 mm. CONCLUSIONS: Accurate 3D feature fusion is feasible, combining luminal information from FE-MRA with vessel wall information on unenhanced CT. This framework holds promise for combining the complementary strengths of magnetic resonance imaging and CT to generate information-rich, multifeature composite vascular images while avoiding the respective risks and limitations of both modalities.


Assuntos
Óxido Ferroso-Férrico/administração & dosagem , Angiografia por Ressonância Magnética/métodos , Insuficiência Renal/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Doenças Vasculares/diagnóstico por imagem , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Próteses e Implantes
10.
Radiology ; 293(3): 554-564, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638489

RESUMO

Background Ferumoxytol is approved for use in the treatment of iron deficiency anemia, but it can serve as an alternative to gadolinium-based contrast agents. On the basis of postmarketing surveillance data, the Food and Drug Administration issued a black box warning regarding the risks of rare but serious acute hypersensitivity reactions during fast high-dose injection (510 mg iron in 17 seconds) for therapeutic use. Whereas single-center safety data for diagnostic use have been positive, multicenter data are lacking. Purpose To report multicenter safety data for off-label diagnostic ferumoxytol use. Materials and Methods The multicenter ferumoxytol MRI registry was established as an open-label nonrandomized surveillance databank without industry involvement. Each center monitored all ferumoxytol administrations, classified adverse events (AEs) using the National Cancer Institute Common Terminology Criteria for Adverse Events (grade 1-5), and assessed the relationship of AEs to ferumoxytol administration. AEs related to or possibly related to ferumoxytol injection were considered adverse reactions. The core laboratory adjudicated the AEs and classified them with the American College of Radiology (ACR) classification. Analysis of variance was used to compare vital signs. Results Between January 2003 and October 2018, 3215 patients (median age, 58 years; range, 1 day to 96 years; 1897 male patients) received 4240 ferumoxytol injections for MRI. Ferumoxytol dose ranged from 1 to 11 mg per kilogram of body weight (≤510 mg iron; rate ≤45 mg iron/sec). There were no systematic changes in vital signs after ferumoxytol administration (P > .05). No severe, life-threatening, or fatal AEs occurred. Eighty-three (1.9%) of 4240 AEs were related or possibly related to ferumoxytol infusions (75 mild [1.8%], eight moderate [0.2%]). Thirty-one AEs were classified as allergiclike reactions using ACR criteria but were consistent with minor infusion reactions observed with parenteral iron. Conclusion Diagnostic ferumoxytol use was well tolerated, associated with no serious adverse events, and implicated in few adverse reactions. Registry results indicate a positive safety profile for ferumoxytol use in MRI. © RSNA, 2019 Online supplemental material is available for this article.


Assuntos
Meios de Contraste/efeitos adversos , Óxido Ferroso-Férrico/efeitos adversos , Imageamento por Ressonância Magnética , Uso Off-Label , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Sistema de Registros
11.
J Cardiovasc Magn Reson ; 21(1): 17, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30853026

RESUMO

BACKGROUND: Although cardiovascular magnetic resonance venography (CMRV) is generally regarded as the technique of choice for imaging the central veins, conventional CMRV is not ideal. Gadolinium-based contrast agents (GBCA) are less suited to steady state venous imaging than to first pass arterial imaging and they may be contraindicated in patients with renal impairment where evaluation of venous anatomy is frequently required. We aim to evaluate the diagnostic performance of 3-dimensional (3D) ferumoxytol-enhanced CMRV (FE-CMRV) for suspected central venous occlusion in patients with renal failure and to assess its clinical impact on patient management. METHODS: In this IRB-approved and HIPAA-compliant study, 52 consecutive adult patients (47 years, IQR 32-61; 29 male) with renal impairment and suspected venous occlusion underwent FE-CMRV, following infusion of ferumoxytol. Breath-held, high resolution, 3D steady state FE-CMRV was performed through the chest, abdomen and pelvis. Two blinded reviewers independently scored twenty-one named venous segments for quality and patency. Correlative catheter venography in 14 patients was used as the reference standard for diagnostic accuracy. Retrospective chart review was conducted to determine clinical impact of FE-CMRV. Interobserver agreement was determined using Gwet's AC1 statistic. RESULTS: All patients underwent technically successful FE-CMRV without any adverse events. 99.5% (1033/1038) of venous segments were of diagnostic quality (score ≥ 2/4) with very good interobserver agreement (AC1 = 0.91). Interobserver agreement for venous occlusion was also very good (AC1 = 0.93). The overall accuracy of FE-CMRV compared to catheter venography was perfect (100.0%). No additional imaging was required prior to a clinical management decision in any of the 52 patients. Twenty-four successful and uncomplicated venous interventions were carried out following pre-procedural vascular mapping with FE-CMRV. CONCLUSIONS: 3D FE-CMRV is a practical, accurate and robust technique for high-resolution mapping of central thoracic, abdominal and pelvic veins and can be used to inform image-guided therapy. It may play a pivotal role in the care of patients in whom conventional contrast agents may be contraindicated or ineffective.


Assuntos
Meios de Contraste/administração & dosagem , Óxido Ferroso-Férrico/administração & dosagem , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/métodos , Flebografia/métodos , Doenças Vasculares/diagnóstico por imagem , Veias/diagnóstico por imagem , Adulto , Constrição Patológica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Prognóstico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Doenças Vasculares/complicações , Doenças Vasculares/terapia
12.
MAGMA ; 31(6): 747-756, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30043124

RESUMO

OBJECTIVE: Our aim was to develop and evaluate a motion-weighted reconstruction technique for improved cardiac function assessment in 4D magnetic resonance imaging (MRI). MATERIALS AND METHODS: A flat-topped, two-sided Gaussian kernel was used to weigh k-space data in each target cardiac phase and adjacent two temporal phases during the proposed phase-by-phase reconstruction algorithm. The proposed method (Strategy 3) was used to reconstruct 18 cardiac phases based on data acquired using a previously proposed technique [4D multiphase steady-state imaging with contrast enhancement (MUSIC) technique and its self-gated extension using rotating Cartesian k-space (ROCK-MUSIC) from 12 pediatric patients. As a comparison, the same data set was reconstructed into nine phases using a phase-by-phase method (Strategy 1), 18 phases using view sharing (Strategy 4), and 18 phases using a temporal regularized method (Strategy 2). Regional image sharpness and left ventricle volumetric measurements were used to compare the four reconstructions quantitatively. RESULTS: Strategies 1 and 4 generated significantly sharper images of static structures (P ≤ 0.018) than Strategies 2 and 3 but significantly more blurry (P ≤ 0.021) images of the heart. Left ventricular volumetric measurements from the nine-phase reconstruction (Strategy 1) correlated moderately (r < 0.8) with the 2D cine, whereas the remaining three techniques had a higher correlation (r > 0.9). The computational burden of Strategy 2 was six times that of Strategy 3. CONCLUSION: The proposed method of motion-weighted reconstruction improves temporal resolution in 4D cardiac imaging with a clinically practical workflow.


Assuntos
Cardiopatias/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Criança , Pré-Escolar , Meios de Contraste , Feminino , Ventrículos do Coração/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Lactente , Recém-Nascido , Imagem Cinética por Ressonância Magnética , Masculino , Movimento (Física) , Distribuição Normal , Imagens de Fantasmas , Respiração , Estudos Retrospectivos , Fatores de Tempo
13.
Radiology ; 286(1): 326-337, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040038

RESUMO

Purpose To assess the technical feasibility of the use of ferumoxytol-enhanced (FE) magnetic resonance (MR) angiography for vascular mapping before transcatheter aortic valve replacement in patients with renal impairment. Materials and Methods This was an institutional review board-approved and HIPAA-compliant study. FE MR angiography was performed at 3.0 T or 1.5 T. Unenhanced computed tomographic (CT) images were used to overlay vascular calcification on FE MR angiographic images as composite fused three-dimensional data. Image quality of the subclavian and aortoiliofemoral arterial tree and confidence in the assessment of calcification were evaluated by using a four-point scale (4 = excellent vascular definition or strong confidence). Signal intensity nonuniformity as reflected by the heterogeneity index (ratio between the mean standard deviation of luminal signal intensity and the mean luminal signal intensity), signal-to-noise ratio, and consistency of luminal diameter measurements were quantified. Findings at FE MR angiography were compared with pelvic angiograms. Results Twenty-six patients underwent FE MR angiography without adverse events. A total of 286 named vascular segments were scored. The image quality score was 4 for 99% (283 of 286) of the segments (κ = 0.9). There was moderate to strong confidence in the ability to assess vascular calcific morphology in all studies with complementary unenhanced CT. The steady-state luminal heterogeneity index was low, and signal-to-noise ratio was high. Interobserver luminal measurements were reliable (intraclass correlation coefficient, 0.98; 95% confidence interval: 0.98, 0.99). FE MR angiographic findings were consistent with correlative pelvic angiograms in all 16 patients for whom the latter were available. Conclusion In patients with renal impairment undergoing transcatheter aortic valve replacement, FE MR angiography is technically feasible and offers reliable vascular mapping without exposure to iodine- or gadolinium-based contrast agents. Thus, the total cumulative dose of iodine-based contrast material is minimized and the risk of acute nephropathy is reduced. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Óxido Ferroso-Férrico/uso terapêutico , Nefropatias/complicações , Angiografia por Ressonância Magnética/métodos , Medicina de Precisão/métodos , Substituição da Valva Aórtica Transcateter/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade
14.
J Cardiovasc Magn Reson ; 19(1): 106, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29284494

RESUMO

BACKGROUND: Bright-blood and black-blood cardiovascular magnetic resonance (CMR) techniques are frequently employed together during a clinical exam because of their complementary features. While valuable, existing black-blood CMR approaches are flow dependent and prone to failure. We aim to assess the effectiveness and reliability of ferumoxytol enhanced (FE) Half-Fourier Single-shot Turbo Spin-echo (HASTE) imaging without magnetization preparation pulses to yield uniform intra-luminal blood signal suppression by comparing FE-HASTE with pre-ferumoxytol HASTE imaging. METHODS: This study was IRB-approved and HIPAA compliant. Consecutive patients who were referred for FE-CMR between June 2013 and February 2017 were enrolled. Qualitative image scores reflecting the degree and reliability of blood signal suppression were based on a 3-point Likert scale, with 3 reflecting perfect suppression. For quantitative evaluation, homogeneity indices (defined as standard deviation of the left atrial signal intensity) and signal-to-noise ratios (SNR) for vascular lumens and cardiac chambers were measured. RESULTS: Of the 340 unique patients who underwent FE-CMR, HASTE was performed in 257. Ninety-three patients had both pre-ferumoxytol HASTE and FE-HASTE, and were included in this analysis. Qualitative image scores reflecting the degree and reliability of blood signal suppression were significantly higher for FE-HASTE images (2.9 [IQR 2.8-3.0] vs 1.8 [IQR 1.6-2.1], p < 0.001). Inter-reader agreement was moderate (k = 0.50, 95% CI 0.45-0.55). Blood signal suppression was more complete on FE-HASTE images than on pre-ferumoxytol HASTE, as indicated by lower mean homogeneity indices (24.5 [IQR 18.0-32.8] vs 108.0 [IQR 65.0-170.4], p < 0.001) and lower blood pool SNR for all regions (5.6 [IQR 3.2-10.0] vs 21.5 [IQR 12.5-39.4], p < 0.001). CONCLUSION: FE-HASTE black-blood imaging offers an effective, reliable, and simple approach for flow independent blood signal suppression. The technique holds promise as a fast and routine complement to bright-blood cardiovascular imaging with ferumoxytol.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Óxido Ferroso-Férrico/administração & dosagem , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética , Adolescente , Adulto , Idoso , Velocidade do Fluxo Sanguíneo , Doenças Cardiovasculares/fisiopatologia , Criança , Pré-Escolar , Feminino , Análise de Fourier , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
15.
J Magn Reson Imaging ; 45(3): 804-812, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27480885

RESUMO

PURPOSE: To summarize our single-center safety experience with the off-label use of ferumoxytol for magnetic resonance imaging (MRI) and to compare the effects of ferumoxytol on monitored physiologic indices in patients under anesthesia with those of gadofosveset trisodium. MATERIALS AND METHODS: Consecutive patients who underwent ferumoxytol-enhanced (FE) MRI exams were included. Adverse events (AEs) were classified according to the Common Terminology Criteria for Adverse Events v4.0. In a subgroup of patients examined under general anesthesia, recording of blood pressure, heart rate, oxygen saturation, and end-tidal CO2 was performed. A comparable group of 23 patients who underwent gadofosveset-enhanced (GE) MRI under anesthesia with similar monitoring was also analyzed. RESULTS: In all, 217 unique patients, ages 3 days to 94 years, underwent FE-MRI. No ferumoxytol-related severe, life-threatening, or fatal AEs occurred acutely or at follow-up. Two patients developed ferumoxytol-related nausea. Between-group (FE- vs. GE-MRI) comparisons showed no statistical difference in heart rate (P = 0.69, 95% confidence interval [CI] 96-113 bpm), mean arterial blood pressure (MAP) (P = 0.74, 95% CI 44-52 mmHg), oxygen saturation (P = 0.76, 95% CI 94-98%), and end-tidal CO2 (P = 0.73, 95% CI 31-37 mmHg). No significant change in MAP (P = 0.12, 95% CI 50-58 mmHg) or heart rate (P = 0.25, 95% CI 91-105 bpm) was noted between slow infusion of ferumoxytol (n = 113) vs. bolus injection (n = 104). CONCLUSION: In our single-center experience, no serious AEs occurred with the diagnostic use of ferumoxytol across a wide spectrum of age, renal function, and indications. Because of the limited sample size, firm conclusions cannot be drawn about the generalizability of our results. Thus, vigilance and monitoring are recommended to mitigate potential rare adverse reactions. LEVEL OF EVIDENCE: 2 J. Magn. Reson. Imaging 2017;45:804-812.


Assuntos
Meios de Contraste , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Óxido Ferroso-Férrico , Imageamento por Ressonância Magnética/estatística & dados numéricos , Uso Off-Label/estatística & dados numéricos , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Los Angeles/epidemiologia , Masculino , Pessoa de Meia-Idade , Segurança do Paciente , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...