Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2322211121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593080

RESUMO

Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.


Assuntos
Marchantia , Masculino , Animais , Marchantia/genética , AMP Cíclico/metabolismo , Motilidade dos Espermatozoides/genética , Sementes/metabolismo , Adenilil Ciclases/metabolismo , Espermatozoides/metabolismo
2.
Sci Rep ; 14(1): 3387, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336896

RESUMO

Spermatogenesis is one of the most dramatic changes in cell differentiation. Remarkable chromatin condensation of the nucleus is observed in animal, plant, and algal sperm. Sperm nuclear basic proteins (SNBPs), such as protamine and sperm-specific histone, are involved in chromatin condensation of the sperm nucleus. Among brown algae, sperm of the oogamous Fucales algae have a condensed nucleus. However, the existence of sperm-specific SNBPs in Fucales algae was unclear. Here, we identified linker histone (histone H1) proteins in the sperm and analyzed changes in their gene expression pattern during spermatogenesis in Sargassum horneri. A search of transcriptomic data for histone H1 genes in showed six histone H1 genes, which we named ShH1.1a, ShH1b, ShH1.2, ShH1.3, ShH1.4, and ShH1.5. Analysis of SNBPs using SDS-PAGE and LC-MS/MS showed that sperm nuclei contain histone ShH1.2, ShH1.3, and ShH1.4 in addition to core histones. Both ShH1.2 and ShH1.3 genes were expressed in the vegetative thallus and the male and female receptacles (the organs producing antheridium or oogonium). Meanwhile, the ShH1.4 gene was expressed in the male receptacle but not in the vegetative thallus and female receptacles. From these results, ShH1.4 may be a sperm-specific histone H1 of S. horneri.


Assuntos
Histonas , Sargassum , Animais , Masculino , Histonas/genética , Histonas/metabolismo , Sargassum/metabolismo , Cromatografia Líquida , Sêmen/metabolismo , Espectrometria de Massas em Tandem , Núcleo Celular/metabolismo , Cromatina/metabolismo , Espermatozoides/metabolismo
3.
J Biol Chem ; 299(11): 105277, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742916

RESUMO

Cytochrome c oxidase (CcO) reduces O2 in the O2-reduction site by sequential four-electron donations through the low-potential metal sites (CuA and Fea). Redox-coupled X-ray crystal structural changes have been identified at five distinct sites including Asp51, Arg438, Glu198, the hydroxyfarnesyl ethyl group of heme a, and Ser382, respectively. These sites interact with the putative proton-pumping H-pathway. However, the metal sites responsible for each structural change have not been identified, since these changes were detected as structural differences between the fully reduced and fully oxidized CcOs. Thus, the roles of these structural changes in the CcO function are yet to be revealed. X-ray crystal structures of cyanide-bound CcOs under various oxidation states showed that the O2-reduction site controlled only the Ser382-including site, while the low-potential metal sites induced the other changes. This finding indicates that these low-potential site-inducible structural changes are triggered by sequential electron-extraction from the low-potential sites by the O2-reduction site and that each structural change is insensitive to the oxidation and ligand-binding states of the O2-reduction site. Because the proton/electron coupling efficiency is constant (1:1), regardless of the reaction progress in the O2-reduction site, the structural changes induced by the low-potential sites are assignable to those critically involved in the proton pumping, suggesting that the H-pathway, facilitating these low-potential site-inducible structural changes, pumps protons. Furthermore, a cyanide-bound CcO structure suggests that a hypoxia-inducible activator, Higd1a, activates the O2-reduction site without influencing the electron transfer mechanism through the low-potential sites, kinetically confirming that the low-potential sites facilitate proton pump.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Prótons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Cianetos , Bombas de Próton/química , Oxirredução , Metais , Cristalografia por Raios X
4.
Commun Biol ; 6(1): 697, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420035

RESUMO

The order Parmales (class Bolidophyceae) is a minor group of pico-sized eukaryotic marine phytoplankton that contains species with cells surrounded by silica plates. Previous studies revealed that Parmales is a member of ochrophytes and sister to diatoms (phylum Bacillariophyta), the most successful phytoplankton group in the modern ocean. Therefore, parmalean genomes can serve as a reference to elucidate both the evolutionary events that differentiated these two lineages and the genomic basis for the ecological success of diatoms vs. the more cryptic lifestyle of parmaleans. Here, we compare the genomes of eight parmaleans and five diatoms to explore their physiological and evolutionary differences. Parmaleans are predicted to be phago-mixotrophs. By contrast, diatoms have lost genes related to phagocytosis, indicating the ecological specialization from phago-mixotrophy to photoautotrophy in their early evolution. Furthermore, diatoms show significant enrichment in gene sets involved in nutrient uptake and metabolism, including iron and silica, in comparison with parmaleans. Overall, our results suggest a strong evolutionary link between the loss of phago-mixotrophy and specialization to a silicified photoautotrophic life stage early in diatom evolution after diverging from the Parmales lineage.


Assuntos
Diatomáceas , Estramenópilas , Diatomáceas/genética , Estramenópilas/genética , Fitoplâncton/metabolismo , Genoma , Dióxido de Silício
5.
Front Chem ; 11: 1108190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214485

RESUMO

Cytochrome c oxidase (CcO) reduces molecular oxygen (O2) to water, coupled with a proton pump from the N-side to the P-side, by receiving four electrons sequentially from the P-side to the O2-reduction site-including Fea3 and CuB-via the two low potential metal sites; CuA and Fea. The catalytic cycle includes six intermediates as follows, R (Fea3 2+, CuB 1+, Tyr244OH), A (Fea3 2+-O2, CuB 1+, Tyr244OH), Pm (Fea3 4+ = O2-, CuB 2+-OH-, Tyr244O•), F (Fea3 4+ = O2-, CuB 2+-OH-, Tyr244OH), O (Fea3 3+-OH-, CuB 2+-OH-, Tyr244OH), and E (Fea3 3+-OH-, CuB 1+-H2O, Tyr244OH). CcO has three proton conducting pathways, D, K, and H. The D and K pathways connect the N-side surface with the O2-reduction site, while the H-pathway is located across the protein from the N-side to the P-side. The proton pump is driven by electrostatic interactions between the protons to be pumped and the net positive charges created during the O2 reduction. Two different proton pump proposals, each including either the D-pathway or H-pathway as the proton pumping site, were proposed approximately 30 years ago and continue to be under serious debate. In our view, the progress in understanding the reaction mechanism of CcO has been critically rate-limited by the resolution of its X-ray crystallographic structure. The improvement of the resolutions of the oxidized/reduced bovine CcO up to 1.5/1.6 Å resolution in 2016 provided a breakthrough in the understanding of the reaction mechanism of CcO. In this review, experimental studies on the reaction mechanism of CcO before the appearance of the 1.5/1.6 Å resolution X-ray structures are summarized as a background description. Following the summary, we will review the recent (since 2016) experimental findings which have significantly improved our understanding of the reaction mechanism of CcO including: 1) redox coupled structural changes of bovine CcO; 2) X-ray structures of all six intermediates; 3) spectroscopic findings on the intermediate species including the Tyr244 radical in the Pm form, a peroxide-bound form between the A and Pm forms, and Fr, a one-electron reduced F-form; 4) time resolved X-ray structural changes during the photolysis of CO-bound fully reduced CcO using XFEL; 5) a simulation analysis for the Pm→Pr→F transition.

6.
Mitochondrion ; 60: 228-233, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34481964

RESUMO

In memoriam of Bernhard Kadenbach: Although the main focus of his research was the structure, function, and regulation of mitochondrial cytochrome c oxidase (CytOx), he earlier studied the mitochondrial phosphate carrier and found an essential role of cardiolipin. Later, he discovered tissue-specific and developmental-specific protein isoforms of CytOx. Defective activity of CytOx is found with increasing age in human muscle and neuronal cells resulting in mitochondrial diseases. Kadenbach proposed a theory on the cause of oxidative stress, aging, and associated diseases stating that allosteric feedback inhibition of CytOx at high mitochondrial ATP/ADP ratios is essential for healthy living while stress-induced reversible dephosphorylation of CytOx results in the formation of excessive reactive oxygen species that trigger degenerative diseases. This article summarizes the main discoveries of Kadenbach related to mammalian CytOx and discusses their implications for human disease.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Isoenzimas , Mitocôndrias/genética
7.
J Biol Chem ; 297(3): 100967, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34274318

RESUMO

Mammalian cytochrome c oxidase (CcO) reduces O2 to water in a bimetallic site including Fea3 and CuB giving intermediate molecules, termed A-, P-, F-, O-, E-, and R-forms. From the P-form on, each reaction step is driven by single-electron donations from cytochrome c coupled with the pumping of a single proton through the H-pathway, a proton-conducting pathway composed of a hydrogen-bond network and a water channel. The proton-gradient formed is utilized for ATP production by F-ATPase. For elucidation of the proton pumping mechanism, crystal structural determination of these intermediate forms is necessary. Here we report X-ray crystallographic analysis at ∼1.8 Å resolution of fully reduced CcO crystals treated with O2 for three different time periods. Our disentanglement of intermediate forms from crystals that were composed of multiple forms determined that these three crystallographic data sets contained ∼45% of the O-form structure, ∼45% of the E-form structure, and ∼20% of an oxymyoglobin-type structure consistent with the A-form, respectively. The O- and E-forms exhibit an unusually long CuB2+-OH- distance and CuB1+-H2O structure keeping Fea33+-OH- state, respectively, suggesting that the O- and E-forms have high electron affinities that cause the O→E and E→R transitions to be essentially irreversible and thus enable tightly coupled proton pumping. The water channel of the H-pathway is closed in the O- and E-forms and partially open in the R-form. These structures, together with those of the recently reported P- and F-forms, indicate that closure of the H-pathway water channel avoids back-leaking of protons for facilitating the effective proton pumping.


Assuntos
Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/enzimologia , Bombas de Próton/metabolismo , Animais , Catálise , Bovinos , Cristalografia por Raios X , Complexo IV da Cadeia de Transporte de Elétrons/química , Conformação Proteica
8.
J Gen Appl Microbiol ; 67(5): 207-213, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34248085

RESUMO

A unicellular cyanobacterium that produces a large amount of exopolysaccharide (EPS) was isolated. The isolate, named Chroococcus sp. FPU101, grew between 20 and 30°C and at light intensities between 10 and 80 µmol m-2 s-1. Purified EPS from Chroococcus sp. FPU101 had a molecular size of 5.9 × 103 kDa and contained galactose, rhamnose, fucose, xylose, mannose, glucose, galacturonic acid, and glucuronic acid at a molar ratio of 17.2:15.9:14.1:11.0:9.6:9.5:13.0:9.7. The EPS content significantly increased when the NaCl concentration in the medium was increased from 1.7 to 100 mM. However, high NaCl concentrations did not significantly affect the molecular size or chemical composition of the EPS. The genes wza, wzb, wzc, wzx, wzy, and wzz that are involved in EPS synthesis were conserved in the genome of Chroococcus sp. FPU101, which was sequenced in this study. These results suggest that the Wzy-dependent pathway is potentially involved in EPS production in this organism.


Assuntos
Cianobactérias/fisiologia , Genoma Bacteriano , Polissacarídeos Bacterianos/química , Cianobactérias/química , Cianobactérias/genética , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética
9.
BBA Adv ; 1: 100009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37082008

RESUMO

Cytochrome c oxidase (CcO) in the respiratory chain catalyzes oxygen reduction by coupling electron and proton transfer through the enzyme and proton pumping across the membrane. Although the functional unit of CcO is monomeric, mitochondrial CcO forms a monomer and a dimer, as well as a supercomplex with respiratory complexes I and III. A recent study showed that dimeric CcO has lower activity than monomeric CcO and proposed that dimeric CcO is a standby form for enzymatic activation in the mitochondrial membrane. Other studies have suggested that the dimerization is dependent on specifically arranged lipid molecules, peptide segments, and post-translationally modified amino acid residues. To re-examine the structural basis of dimerization, we improved the resolution of the crystallographic structure to 1.3 Å by optimizing the method for cryoprotectant soaking. The observed electron density map revealed many weakly bound detergent and lipid molecules at the interface of the dimer. The dimer interface also contained hydrogen bonds with tightly bound cholate molecules, hydrophobic interactions between the transmembrane helices, and a Met-Met interaction between the extramembrane regions. These results imply that binding of physiological ligands structurally similar to cholate could trigger dimerization in the mitochondrial membrane and that non-specifically bound lipid molecules at the transmembrane surface between monomers support the stabilization of the dimer. The weak interactions involving the transmembrane helices and extramembrane regions may play a role in positioning each monomer at the correct orientation in the dimer.

10.
Biochem J ; 477(8): 1565-1578, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32250438

RESUMO

In the electron transfer (ET) reaction from cytochrome c (Cyt c) to cytochrome c oxidase (CcO), we determined the number and sites of the hydration water released from the protein surface upon the formation of the ET complex by evaluating the osmotic pressure dependence of kinetics for the ET from Cyt c to CcO. We identified that ∼20 water molecules were dehydrated in complex formation under turnover conditions, and systematic Cyt c mutations in the interaction site for CcO revealed that nearly half of the released hydration water during the complexation were located around Ile81, one of the hydrophobic amino acid residues near the exposed heme periphery of Cyt c. Such a dehydration dominantly compensates for the entropy decrease due to the association of Cyt c with CcO, resulting in the entropy-driven ET reaction. The energetic analysis of the interprotein interactions in the ET complex predicted by the docking simulation suggested the formation of hydrophobic interaction sites surrounding the exposed heme periphery of Cyt c in the Cyt c-CcO interface (a 'molecular breakwater'). Such sites would contribute to the formation of the hydrophobic ET pathway from Cyt c to CcO by blocking water access from the bulk water phase.


Assuntos
Citocromos c/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Água/química , Citocromos c/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Entropia , Escherichia coli/química , Proteínas de Escherichia coli/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Pressão Osmótica , Oxirredução , Água/metabolismo
11.
J Biol Chem ; 295(17): 5818-5833, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32165497

RESUMO

Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fe a32+ and CuB1+, and suggests that a peroxide-bound state (Fe a33+-O--O--CuB2+) rather than an O2-bound state (Fe a32+-O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fe a32+-O2, whereas Fe a33+-O--O--CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Šresolution. A 1.70 ŠFe-O distance of the ferryl center could best be described as Fe a34+ = O2-, not as Fe a34+-OH- The distance suggests an ∼800-cm-1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fe a33+-O--O--CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Animais , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Complexo IV da Cadeia de Transporte de Elétrons/química , Modelos Moleculares , Oxirredução , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons
12.
Proc Natl Acad Sci U S A ; 116(40): 19945-19951, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31533957

RESUMO

Cytochrome c oxidase (CcO), a membrane enzyme in the respiratory chain, catalyzes oxygen reduction by coupling electron and proton transfer through the enzyme with a proton pump across the membrane. In all crystals reported to date, bovine CcO exists as a dimer with the same intermonomer contacts, whereas CcOs and related enzymes from prokaryotes exist as monomers. Recent structural analyses of the mitochondrial respiratory supercomplex revealed that CcO monomer associates with complex I and complex III, indicating that the monomeric state is functionally important. In this study, we prepared monomeric and dimeric bovine CcO, stabilized using amphipol, and showed that the monomer had high activity. In addition, using a newly synthesized detergent, we determined the oxidized and reduced structures of monomer with resolutions of 1.85 and 1.95 Å, respectively. Structural comparison of the monomer and dimer revealed that a hydrogen bond network of water molecules is formed at the entry surface of the proton transfer pathway, termed the K-pathway, in monomeric CcO, whereas this network is altered in dimeric CcO. Based on these results, we propose that the monomer is the activated form, whereas the dimer can be regarded as a physiological standby form in the mitochondrial membrane. We also determined phospholipid structures based on electron density together with the anomalous scattering effect of phosphorus atoms. Two cardiolipins are found at the interface region of the supercomplex. We discuss formation of the monomeric CcO, dimeric CcO, and supercomplex, as well as their role in regulation of CcO activity.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Mitocôndrias Cardíacas/enzimologia , Animais , Cardiolipinas/química , Bovinos , Cristalografia por Raios X , Digitonina/química , Transporte de Elétrons , Complexo I de Transporte de Elétrons/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Membranas Mitocondriais/enzimologia , Conformação Molecular , Oxirredução , Oxigênio/química , Fosfolipídeos/química , Fósforo/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica
13.
J Synchrotron Radiat ; 26(Pt 4): 912-921, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274413

RESUMO

To investigate the effect of high-energy X-rays on site-specific radiation-damage, low-dose diffraction data were collected from radiation-sensitive crystals of the metal enzyme cytochrome c oxidase. Data were collected at the Structural Biology I beamline (BL41XU) at SPring-8, using 30 keV X-rays and a highly sensitive pixel array detector equipped with a cadmium telluride sensor. The experimental setup of continuous sample translation using multiple crystals allowed the average diffraction weighted dose per data set to be reduced to 58 kGy, and the resulting data revealed a ligand structure featuring an identical bond length to that in the damage-free structure determined using an X-ray free-electron laser. However, precise analysis of the residual density around the ligand structure refined with the synchrotron data showed the possibility of a small level of specific damage, which might have resulted from the accumulated dose of 58 kGy per data set. Further investigation of the photon-energy dependence of specific damage, as assessed by variations in UV-vis absorption spectra, was conducted using an on-line spectrometer at various energies ranging from 10 to 30 keV. No evidence was found for specific radiation damage being energy dependent.


Assuntos
Cristalografia por Raios X/métodos , Complexo IV da Cadeia de Transporte de Elétrons/química , Raios X , Relação Dose-Resposta à Radiação , Conformação Proteica , Síncrotrons
14.
J Gen Appl Microbiol ; 65(1): 39-46, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29998926

RESUMO

The clonal strains, phycoerythrin(PE)-rich- and PE-poor strains, of the unicellular, fresh water cyanobacterium Aphanothece sacrum (Suringar) Okada (Suizenji Nori, in Japanese) were isolated from traditional open-air aquafarms in Japan. A. sacrum appeared to be oligotrophic on the basis of its growth characteristics. The optimum temperature for growth was around 20°C. Maximum growth and biomass increase at 20°C was obtained under light intensities between 40 to 80 µmol m-2 s-1 (fluorescent lamps, 12 h light/12 h dark cycles) and between 40 to 120 µmol m-2 s-1 for PE-rich and PE-poor strains, respectively, of A. sacrum . Purified exopolysaccharide (EPS) of A. sacrum has a molecular weight of ca. 104 kDa with five major monosaccharides (glucose, xylose, rhamnose, galactose and mannose; ≥85 mol%). We also deciphered the whole genome sequence of the two strains of A. sacrum. The putative genes involved in the polymerization, chain length control, and export of EPS would contribute to understand the biosynthetic process of their extremely high molecular weight EPS. The putative genes encoding Wzx-Wzy-Wzz- and Wza-Wzb-Wzc were conserved in the A. sacrum strains FPU1 and FPU3. This result suggests that the Wzy-dependent pathway participates in the EPS production of A. sacrum.


Assuntos
Cianobactérias/química , Água Doce/microbiologia , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Genoma Bacteriano/genética , Luz , Peso Molecular , Monossacarídeos , Processos Fototróficos , Filogenia , Polimerização , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , RNA Ribossômico 16S/genética , Análise de Sequência , Temperatura
15.
J Phycol ; 55(1): 196-203, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30320892

RESUMO

Triparma laevis f. inornata is a unicellular alga belonging to the Bolidophyceae, which is most closely related to diatoms. Like diatoms, T. laevis f. inornata has a siliceous cell wall. The cell wall of T. laevis f. inornata consists of four round plates (three shields and one ventral plate) and one dorsal and three girdle plates. But, unlike diatoms, T. laevis f. inornata cells can grow when concentrations of silica are depleted. We took advantage of this ability, using TEM to study the ontogeny of the siliceous plate, pattern center formation, and development. Two types of pattern centers (annulus and sternum) were observed in the early and middle stage of plate formation. During their formation, the annuli were initially crescent-shaped but eventually their ends fused to make a ring. Only outward silica deposition of the branching ribs occurred on the growing annulus until it became a ring, resulting in an unfilled circle inside the annulus. The pattern center of the shield plate was always an annulus, but in ventral plates both annulus and sternum were observed. The annuli and sterna in T. laevis f. inornata round plates were very similar to the annuli and sterna in diatom valves. These results suggested that the round plates of Parmales are homologous to diatom valves. This information on the plate ontogeny of T. laevis f. inornata provides new insights into the evolution of the siliceous cell wall in the Parmales and diatoms.


Assuntos
Diatomáceas , Estramenópilas , Parede Celular , Dióxido de Silício
16.
J Biol Chem ; 293(38): 14868-14879, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30077971

RESUMO

Cytochrome c oxidase (CcO) is the terminal oxidase of cellular respiration, reducing O2 to water and pumping protons. X-ray structural features have suggested that CcO pumps protons via a mechanism involving electrostatic repulsions between pumping protons in the hydrogen-bond network of a proton-conducting pathway (the H-pathway) and net positive charges created upon oxidation of an iron site, heme a (Fe a2+), for reduction of O2 at another iron site, heme a3 (Fe a32+). The protons for pumping are transferred to the hydrogen-bond network from the N-side via the water channel of the H-pathway. Back-leakage of protons to the N-side is thought to be blocked by closure of the water channel. To experimentally test this, we examined X-ray structures of the azide-bound, oxidized bovine CcO and found that an azide derivative (N3--Fe a33+, CuB2+-N3-) induces a translational movement of the heme a3 plane. This was accompanied by opening of the water channel, revealing that Fe a3 and the H-pathway are tightly coupled. The channel opening in the oxidized state is likely to induce back-leakage of pumping protons, which lowers the proton level in the hydrogen-bond network during enzymatic turnover. The proton level decrease weakens the electron affinity of Fe a , if Fe a electrostatically interacts with protons in the hydrogen-bond network. The previously reported azide-induced redox-potential decrease in Fe a supports existence of the electrostatic interaction. In summary, our results indicate that the H-pathway is critical for CcO's proton-pumping function.


Assuntos
Azidas/química , Cristalografia por Raios X/métodos , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Bombas de Próton/metabolismo , Animais , Bovinos , Heme/análogos & derivados , Heme/metabolismo , Ligação de Hidrogênio , Ferro/metabolismo , Oxirredução
17.
Biochim Biophys Acta Bioenerg ; 1859(10): 1045-1050, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29859163

RESUMO

Time-resolved IR analyses for the protonation and polarity changes of carboxyl groups involved in proton pump enzymes under turnover conditions are indispensable for elucidation of their proton-pump mechanisms. We have developed a new time-resolved infrared facility by introducing a flow system for transferring highly concentrated and thus viscous protein solution to a thin (50 µm) flow cell equipped in a highly sensitive IR spectrometer constructed with the femtosecond mid-IR pulse laser with spectral width of 350 cm-1 as an IR white light source equipped with multi-channel MCT detector. This facility equipped with O2 supply system enables the sub-millisecond time scale infrared measurements of the O2 reduction coupled with proton pumping by bovine cytochrome c oxidase (CcO) initiated by CO-flash photolysis in the COOH (1725-1770 cm-1) region with the accuracy of about 10 µO.D. under the background O.D. of 1. The facility identifies a band intensity change at ~1744 cm-1 assignable to protonation of a carboxyl group coupled with a single electron transfer to the O2 reduction center within 1 ms after initiation of the reaction. The results suggest that the facility detects protonation of a single carboxyl group included in large proteins like as CcO (210 kDa). The present facility sensitively identifies also polarity changes in COOH group by detecting shifts of the bands near 1750 cm-1 and 1760 cm-1, without significant intensity changes. These findings show the performance of this facility sufficiently high for providing crucial information for understanding the proton transferring mechanisms of protein carboxyl groups.

18.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 2): 92-98, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400318

RESUMO

Cytochrome c oxidase (CcO), the terminal oxidase in cellular respiration, couples proton pumping to O2 reduction. Mammalian CcO resides in the inner mitochondrial membrane. Previously, a model of H-pathway proton pumping was proposed based on various CcO crystal structures. However, all previously determined structures were solved using crystals obtained at pH 5.7, which differs from the environmental pH of CcO in the inner membrane. The structures of fully oxidized and ligand-free reduced CcO at pH 7.3 have now been determined. Structural comparison between the oxidized and reduced states revealed that the structural alterations that occurred upon redox change at pH 5.7 in Asp51, the magnesium-containing cluster, haem groups and helix X, which provide important structural evidence for the H-pathway proton-pumping proposal, also occur at pH 7.3. These structural alterations were restricted to a local region of CcO; no domain movement was detected, nor were significant structural alterations detected in peripheral regions at either pH value. These observations indicate that the small and precise structural alterations that occur over the course of the reaction cycle are not affected by pH change, and that isolated CcO precisely performs proton pumping via the H-pathway over a wide pH range. Because the pH is not uniform across the molecular surface of CcO, the fact that the overall structure of CcO is not affected by pH changes ensures the high enzymatic efficiency of this protein in the mitochondria.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Animais , Bovinos , Concentração de Íons de Hidrogênio , Ligantes , Oxirredução , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Difração de Raios X/métodos
19.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 7): 416-422, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28695851

RESUMO

Cytochrome c oxidase (CcO) couples proton pumping to O2 reduction. Its enzymatic activity depends sensitively on pH over a wide range. However, owing to difficulty in crystallizing this protein, X-ray structure analyses of bovine CcO aimed at understanding its reaction mechanism have been conducted using crystals prepared at pH 5.7, which is significantly lower than that in the cell. Here, oxidized CcO at pH 7.3 was crystallized using a fluorinated octyl-maltoside derivative, and the structure was determined at 1.77 Šresolution. No structural differences between crystals obtained at the neutral pH and the acidic pH were detected within the molecules. On the other hand, some differences in intermolecular interactions were detected between the two types of crystal. The influence of pH on the molecular surface is likely to contribute to the pH dependency of the aerobic oxidation of ferrocytochrome c.


Assuntos
Detergentes/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Hidrocarbonetos Fluorados/química , Maltose/análogos & derivados , Mitocôndrias Cardíacas/química , Subunidades Proteicas/química , Prótons , Motivos de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Maltose/química , Mitocôndrias Cardíacas/enzimologia , Modelos Moleculares , Miocárdio/química , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo
20.
Sci Adv ; 3(7): e1603042, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28740863

RESUMO

Bovine cytochrome c oxidase (CcO), a 420-kDa membrane protein, pumps protons using electrostatic repulsion between protons transferred through a water channel and net positive charges created by oxidation of heme a (Fe a ) for reduction of O2 at heme a3 (Fe a3). For this process to function properly, timing is essential: The channel must be closed after collection of the protons to be pumped and before Fe a oxidation. If the channel were to remain open, spontaneous backflow of the collected protons would occur. For elucidation of the channel closure mechanism, the opening of the channel, which occurs upon release of CO from CcO, is investigated by newly developed time-resolved x-ray free-electron laser and infrared techniques with nanosecond time resolution. The opening process indicates that CuB senses completion of proton collection and binds O2 before binding to Fe a3 to close the water channel using a conformational relay system, which includes CuB, heme a3, and a transmembrane helix, to block backflow of the collected protons.


Assuntos
Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme/química , Heme/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Oxirredução , Fotólise , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...