Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 192: 106223, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37903701

RESUMO

Ocean-based carbon dioxide removal has gained immense attention as a countermeasure against climate change. The enhancement of ocean alkalinity and the creation of new blue carbon ecosystems are considered effective approaches for this. To evaluate the function of steelmaking slag from the viewpoints of CO2 reduction and creation of new blue carbon ecosystems, we conducted a comparative experiment using two mesocosms that replicated tidal-flats and shallow-water ecosystems. Initially, approximately 20 seagrasses (Zostera marina) were transplanted into the shallow-water area in the mesocosm tanks. The use of steelmaking slag is expected to increase the pH by releasing calcium and mitigate turbidity by solidifying dredged soil. In the experimental tank, where dredged soil and steelmaking slag were utilized as bed materials, the pH remained higher throughout the experimental period compared with the control tank, which utilized only dredged soil. As a result, pCO2 remained consistently lower in the experimental tank due to mainly its alkaline effect (March 2019: -10 ± 6 µatm, September 2019: -130 ± 47 µatm). The light environment in the control tank deteriorated due to high turbidity, whereas the turbidity in the experimental tank remained low throughout the year. The number of seagrass shoots in the experimental tank was consistently approximately 20, which was higher than that in the control tank. Additionally, more seaweed and benthic algae were observed in the experimental tank, indicating that it was more conducive to the growth of primary producers. In conclusion, tidal-flat and shallow-water ecosystems constructed using dredged soil and steelmaking slag are expected to enhance CO2 uptake and provide a habitat for primary producers that is superior to those constructed using dredged soil only.


Assuntos
Ecossistema , Água , Solo
2.
Materials (Basel) ; 14(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803029

RESUMO

Iron and steel slag (ISS) is a byproduct of iron refining processes. The lack of iron in seawater can cause barren grounds where algae cannot grow. To improve the barren grounds of the sea, a supply of iron to the seawater is necessary. This study focused on bacteria interacting with ISS and promoting iron elution in seawater. Sulfitobacter sp. (TO1A) and Pseudomonas sp. (TO1B) were isolated from Tokyo Bay and Sagami Bay. The co-culture of both bacteria promoted more iron elution than individual cultures. After the incubation of both bacteria with ISS, quartz and vaterite appeared on the surface of the ISS. To maintain continuous iron elution from the ISS in the seawater, we also isolated Pseudoalteromonas sp. (TO7) that formed a yellow biofilm on the ISS. Iron was eluted by TO1A and TO1B, and biofilm was synthesized by TO7 continuously in the seawater. The present research is expected to contribute to the improvement of ISS usage as a material for the construction of seaweed forests.

3.
J Struct Biol ; 204(2): 240-249, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125693

RESUMO

The pearl oyster, Pinctada fucata, is cultured for pearl production in Japan. The shell of the pearl oyster consists of calcium carbonate and a small amount of organic matrix. Despite many studies of the shell matrix proteins, the mechanism by which calcium elements are transported from the mantle to the shell remains unclear. Investigating the molecular mechanism of calcium transportation, we prepared artificial seawater with a high concentration of calcium ions (10ASW) to induce calcification in the pearl oyster. When pearl oysters were cultured in 10ASW, unusual nanoparticles were precipitated on the surface of the nacreous layer. SDS-PAGE and 2D-PAGE analyses revealed that some calcium-sensing proteins (Sarcoplasmic Ca-binding Protein (Pf-SCP) and Pf-filamin A) might be related to the synthesis of these nanoparticles. The recombinant proteins of Pf-SCP can bind to calcium ions and accumulate nanoparticles of calcium carbonate crystals. However, transcriptomic analysis of the pearl oysters grown in 10ASW showed that the matrix protein genes in the shell did not differ before and after treatment with 10ASW. These results suggest that, despite increasing calcium transportation to the shell, treatment with a high concentration of calcium ions does not induce formation of the organic framework in the shell microstructure. These findings offer meaningful insights into the transportation of calcium elements from the mantle to the shell.


Assuntos
Pinctada/metabolismo , Sequência de Aminoácidos , Exoesqueleto , Animais , Cálcio/metabolismo , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Filaminas/metabolismo , Perfilação da Expressão Gênica , Microscopia Eletroquímica de Varredura , Dados de Sequência Molecular
4.
Biometals ; 31(2): 203-215, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29383568

RESUMO

Aluminium ions inhibit growth of the budding yeast Saccharomyces cerevisiae. Disruption of the SSO2 gene increased the susceptibility to aluminium. Sso2p belongs to the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) family. SSO2 has one paralogue, SSO1, which encodes Sso1p. The SNARE complex containing Sso1/2p plays a role in the recognition of plasma membrane targeted vesicle transport. The susceptibility to aluminium stress was not increased in the Δsso1 strain. The phenotype of aluminium ion influx between the wild-type and Δsso2 strains was not different, suggesting that Sso2p was involved in the elimination of cellular aluminium. However, the cellular lipid constitution of Δsso2 was richer in unsaturated fatty acids than the wild type, indicating that Sso2p is associated with lipid homeostasis of the plasma membrane. Aluminium treatment increased the production of reactive oxygen species (ROS) during proliferation. ROS production was increased in the Δsso2 strain after 3 h of aluminium treatment compared with the wild type. These results suggested that Sso2p plays a role in maintaining the lipid composition of the plasma membrane and the increase in unsaturated fatty acids amplified the production of ROS in the acute phase of aluminium stress. ROS derived from aluminium stress inhibited growth and resulted in the susceptibility of the Δsso2 strain.


Assuntos
Alumínio/farmacologia , Proliferação de Células/efeitos dos fármacos , Proteínas Qa-SNARE/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Sequência de Aminoácidos/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Fusão de Membrana/genética , Proteínas de Membrana/genética , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/química , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA