Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(4): 1385-1395, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665671

RESUMO

Brown algae play essential roles ecologically, practically, and evolutionarily because they maintain coastal areas, capture carbon dioxide, and produce valuable chemicals such as therapeutic drugs. To unlock their full potential, understanding the unique molecular biology of brown algae is imperative. Genetic engineering tools that regulate homeostasis in brown algae are essential for determining their biological mechanisms in detail. However, few methodologies have been developed to control gene expression due to the robust structural barriers of brown algae. To address this issue, we designed peptide-based, small interfering RNA (siRNA)-loaded micelles decorated with phenylboronic acid (PBA) ligands. The PBA ligands facilitated the cellular uptake of the micelles into a model brown alga, Ectocarpus siliculosus (E. Siliculosus), through chemical interaction with polysaccharides in the cell wall and biological recognition by boronic acid transporters on the plasma membrane. The micelles, featuring "kill two birds with one stone" ligands, effectively induced gene silencing related to auxin biosynthesis. As a result, the growth of E. siliculosus was temporarily inhibited without persistent genome editing. This study demonstrated the potential for exploring the characteristics of brown algae through a simple yet effective approach and presented a feasible system for delivering siRNA in brown algae.

2.
Proc Natl Acad Sci U S A ; 120(29): e2214320120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428918

RESUMO

Integrating antigen-encoding mRNA (Messenger RNA) and immunostimulatory adjuvant into a single formulation is a promising approach to potentiating the efficacy of mRNA vaccines. Here, we developed a scheme based on RNA engineering to integrate adjuvancy directly into antigen-encoding mRNA strands without hampering the ability to express antigen proteins. Short double-stranded RNA (dsRNA) was designed to target retinoic acid-inducible gene-I (RIG-I), an innate immune receptor, for effective cancer vaccination and then tethered onto the mRNA strand via hybridization. Tuning the dsRNA structure and microenvironment by changing its length and sequence enabled the determination of the structure of dsRNA-tethered mRNA efficiently stimulating RIG-I. Eventually, the formulation loaded with dsRNA-tethered mRNA of the optimal structure effectively activated mouse and human dendritic cells and drove them to secrete a broad spectrum of proinflammatory cytokines without increasing the secretion of anti-inflammatory cytokines. Notably, the immunostimulating intensity was tunable by modulating the number of dsRNA along the mRNA strand, which prevents excessive immunostimulation. Versatility in the applicable formulation is a practical advantage of the dsRNA-tethered mRNA. Its formulation with three existing systems, i.e., anionic lipoplex, ionizable lipid-based lipid nanoparticles, and polyplex micelles, induced appreciable cellular immunity in the mice model. Of particular interest, dsRNA-tethered mRNA encoding ovalbumin (OVA) formulated in anionic lipoplex used in clinical trials exerted a significant therapeutic effect in the mouse lymphoma (E.G7-OVA) model. In conclusion, the system developed here provides a simple and robust platform to supply the desired intensity of immunostimulation in various formulations of mRNA cancer vaccines.


Assuntos
Neoplasias , RNA de Cadeia Dupla , Humanos , Animais , Camundongos , RNA de Cadeia Dupla/genética , Adjuvantes Imunológicos/farmacologia , Antígenos , Imunidade Celular , Citocinas/genética , RNA Mensageiro/genética , Camundongos Endogâmicos C57BL , Neoplasias/terapia
3.
Biomacromolecules ; 24(6): 2721-2729, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37085155

RESUMO

Biodegradable polymers are eco-friendly materials and have attracted attention for use in a sustainable society because they are not accumulated in the environment. Although the characteristics of biodegradable polymers have been assessed well, the effects of their degradation products have not. Herein, we comprehensively evaluated the chemical toxicities of biodegradable polyester, polycaprolactone (PCL), and synthetic oligocaprolactones (OCLs) with different degrees of polymerization. While the PCL did not show any adverse effects on various organisms, high levels of shorter OCLs and the monomer (1 µg/mL for freshwater microorganisms and 1 mg/mL for marine algae and mammalian cells) damaged the tested organisms, including freshwater microorganisms, marine algae, and mammalian cells, which indicated the toxicities of the degradation products under unnaturally high concentrations. These results highlight the need for a further understanding of the effects of the degradation products resulting from biodegradable polyesters to ensure a genuinely sustainable society.


Assuntos
Poliésteres , Polímeros , Animais , Poliésteres/química , Polímeros/química , Mamíferos/metabolismo
4.
Nano Lett ; 23(3): 757-764, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36648291

RESUMO

Effective delivery of the CRISPR-Cas9 components is crucial to realizing the therapeutic potential. Although many delivery approaches have been developed for this application, oral delivery has not been explored due to the degradative nature of the gastrointestinal tract. For this issue, we developed a series of novel phenylboronic acid (PBA)-functionalized chitosan-polyethylenimine (CS-PEI) polymers for oral CRISPR delivery. PBA functionalization equipped the polyplex with higher stability, smooth transport across the mucus, and efficient endosomal escape and cytosolic unpackaging in the cells. From a library of 12 PBA-functionalized CS-PEI polyplexes, we identified a formulation that showed the most effective penetration in the intestinal mucosa after oral gavage to mice. The optimized formulation performed feasible CRISPR-mediated downregulation of the target protein and reduction in the downstream cholesterol. As the first oral CRISPR carrier, this study suggests the potential of addressing the needs of both local and systemic editing in a patient-compliant manner.


Assuntos
Ácidos Borônicos , Quitosana , Animais , Camundongos , Polímeros , Técnicas de Transferência de Genes
5.
ACS Biomater Sci Eng ; 8(2): 348-359, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34979085

RESUMO

Mitochondria play an essential role in cellular metabolism and generate energy in cells. To support these functions, several proteins are encoded in the mitochondrial DNA (mtDNA). The mutation of mtDNA causes mitochondrial dysfunction and ultimately results in a variety of inherited diseases. To date, gene delivery systems targeting mitochondria have been developed to ameliorate mtDNA mutations. However, applications of these strategies in mitochondrial gene therapy are still being explored and optimized. Thus, from this perspective, we herein highlight recent mitochondria-targeting strategies for gene therapy and discuss future directions for effective mitochondria-targeted gene delivery.


Assuntos
DNA Mitocondrial , Mitocôndrias , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Técnicas de Transferência de Genes , Terapia Genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação
6.
Adv Healthc Mater ; 11(9): e2102016, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34913604

RESUMO

Polyplex for messenger RNA (mRNA) delivery requires strong yet reversible association between mRNA and polycation for extracellular robustness and selective intracellular disintegration. Herein, RNA oligonucleotide (OligoRNA) derivatives that bridge mRNA and polycation are developed to stabilize polyplex micelles (PMs). A set of the OligoRNAs introduced with a polyol moiety in their 5' end is designed to hybridize to fixed positions along mRNA strand. After PM preparation from the hybridized mRNA and poly(ethylene glycol)-polycation block copolymer derived with phenylboronic acid (PBA) moieties in its cationic segment, PBA moieties form reversible phenylboronate ester linkages with a polyol moiety at 5' end of OligoRNAs and a diol moiety at their 3' end ribose, in the PM core. The OligoRNAs work as a node to bridge ionically complexed mRNA and polycation, thereby improving PM stability against polyion exchange reaction and ribonuclease attack in extracellular environment. After cellular uptake, intracellular high concentration of adenosine triphosphate triggers the cleavage of phenylboronate ester linkages, resulting in mRNA release from PM. Ultimately, the PM provides efficient mRNA introduction in cultured cells and mouse lungs after intratracheal administration, demonstrating the potential of the bridging strategy in polyplex-based mRNA delivery.


Assuntos
Micelas , RNA , Animais , Ésteres , Camundongos , Oligonucleotídeos , Polieletrólitos , Polietilenoglicóis , RNA Mensageiro/genética , Transfecção
7.
Pharmaceutics ; 13(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071840

RESUMO

Messenger RNA (mRNA) delivery strategies are required to protect biologically fragile mRNA from ribonuclease (RNase) attacks to achieve efficient therapeutic protein expression. To tackle this issue, most mRNA delivery systems have used cationic components, which form electrostatically driven complexes with mRNA and shield encapsulated mRNA strands. However, cationic materials interact with anionic biomacromolecules in physiological environments, which leads to unspecific reactions and toxicities. To circumvent this issue of cation-based approaches, herein, we propose a cation-free delivery strategy by hybridization of PEGylated RNA oligonucleotides with mRNA. The PEG strands on the mRNA sterically and electrostatically shielded the mRNA, improving mRNA nuclease stability 15-fold after serum incubation compared with unhybridized mRNA. Eventually, the PEGylated mRNA induced nearly 20-fold higher efficiency of reporter protein expression than unhybridized mRNA in cultured cells. This study provides a platform to establish a safe and efficient cation-free mRNA delivery system.

8.
J Control Release ; 330: 317-328, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33359053

RESUMO

Carriers for messenger RNA (mRNA) delivery require propensities to protect the mRNA from enzymatic degradation and to selectively release mRNA in the cytosol for smooth mRNA translation. To meet these requirements, we designed mRNA-loaded polyplex micelles (PMs) with ATP-responsive crosslinking in the inner core by complexing mRNA with poly(ethylene glycol)-polycation block copolymers derivatized with phenylboronic acid and polyol groups, which form crosslinking structures via spontaneous phenylboronate ester formation. PMs thus prepared are tolerable against enzymatic attack and, in turn, disintegrate in the cytosol to release mRNA when triggered by the cleavage of phenylboronate ester linkages in response to elevated ATP concentration. Two structural factors of the PM, including (i) the introduction ratios of phenylboronate ester crosslinkers and (ii) the structure and protonation degree of amino groups in the polycation segment, are critical for maximizing protein expression in cultured cells due to the optimized balance between the robustness in the biological milieu and the ATP-responsive mRNA release in the cytosol. The optimal PM formulation was further stabilized by installing cholesterol moieties into both the mRNA and ω-end of the block copolymer to elicit longevity in blood circulation after intravenous injection.


Assuntos
Ésteres , Micelas , Trifosfato de Adenosina , Ácidos Borônicos , Portadores de Fármacos , Polietilenoglicóis , RNA Mensageiro
9.
Biomaterials ; 261: 120332, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32877764

RESUMO

RNA nanotechnology has promise for developing mRNA carriers with enhanced physicochemical and functional properties. However, the potential synergy for mRNA delivery of RNA nanotechnology in cooperation with established carrier systems remains unknown. This study proposes a combinational system of RNA nanotechnology and mRNA polyplexes, by focusing on mRNA steric structure inside the polyplexes. Firstly, several mRNA strands are bundled through hybridization with RNA oligonucleotide crosslinkers to obtain tight mRNA structure, and then the bundled mRNA is mixed with poly(ethylene glycol) (PEG)-polycation block copolymers to prepare PEG-coated polyplex micelles (PMs). mRNA bundling results in highly condensed mRNA packaging inside PM core with dense PEG chains on the surface, thereby, improving PM stability against polyion exchange reaction and ribonuclease (RNase) attack. Importantly, such stabilization effects are attributed to bundled structure of mRNA rather than the increase in total mRNA amount encapsulated in the PMs, as encapsulation of long mRNA strands without bundling fails to improve PM stability. Consequently, PMs loading bundled mRNA exhibit enhanced stability in mouse blood circulation, and induce efficient protein expression in cultured cells and mouse brain.


Assuntos
Micelas , Polietilenoglicóis , Animais , Camundongos , Polímeros , RNA Mensageiro/genética , Transfecção
10.
Angew Chem Int Ed Engl ; 58(33): 11360-11363, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31187576

RESUMO

Ribonuclease (RNase)-mediated degradation of messenger RNA (mRNA) poses a huge obstruction to in vivo mRNA delivery. Herein, we propose a novel strategy to protect mRNA by structuring mRNA to prevent RNase attack through steric hinderance. Bundling of mRNA strands through hybridization of RNA oligonucleotide linkers allowed the preparation of mRNA nano-assemblies (R-NAs) comprised of 7.7 mRNA strands on average, mostly below 100 nm in diameter. R-NA formation boosted RNase stability by around 100-fold compared to naïve mRNA and preserved translational activity, allowing protein production. A mechanistic analysis suggests that an endogenous mRNA unwinding mechanism triggered by 5'-cap-dependent translation may induce selective R-NA dissociation intracellularly, leading to smooth translation. R-NAs showed efficient mRNA transfection in mouse brain, demonstrating the feasibility for in vivo administration.


Assuntos
Nanoestruturas/química , RNA Mensageiro/química , Ribonucleases/metabolismo , Conformação de Ácido Nucleico , Estabilidade de RNA , Ribonucleases/química
11.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987102

RESUMO

Lipid nanoparticles (LNPs) exhibit high potential as carriers of messenger RNA (mRNA). However, the arduous preparation process of mRNA-loaded LNPs remains a huge obstacle for their widespread clinical application. Herein, we tackled this issue by mRNA PEGylation through hybridization with polyethylene glycol (PEG)-conjugated RNA oligonucleotides (PEG-OligoRNAs). Importantly, mRNA translational activity was preserved even after hybridization of 20 PEG-OligoRNAs per mRNA. The straightforward mixing of the PEGylated mRNA with lipofectamine LTX, a commercial lipid-based carrier, just by pipetting in aqueous solution, allowed the successful preparation of mRNA-loaded LNPs with a diameter below 100 nm, whereas the use of non-PEGylated mRNA provided large aggregates above 100- and 1000-nm. In vivo, LNPs prepared from PEG-OligoRNA-hybridized mRNA exhibited high structural stability in biological milieu, without forming detectable aggregates in mouse blood after intravenous injection. In contrast, LNPs from non-PEGylated mRNA formed several micrometer-sized aggregates in blood, leading to rapid clearance from blood circulation and deposition of the aggregates in lung capillaries. Our strategy of mRNA PEGylation was also versatile to prevent aggregation of another type of mRNA-loaded LNP, DOTAP/Chol liposomes. Together, our approach provides a simple and robust preparation method to LNPs for in vivo application.


Assuntos
Lipídeos , Nanopartículas/química , Polietilenoglicóis , RNA Mensageiro , Células Cultivadas , Lipídeos/química , Lipossomos , Nanopartículas/ultraestrutura , Hibridização de Ácido Nucleico , Oligorribonucleotídeos/química , Polietilenoglicóis/química , RNA Mensageiro/química , Transfecção
12.
Biomaterials ; 197: 255-267, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30669016

RESUMO

There has been a progressive interest in the molecular design of polymers and lipids as synthetic carriers for targeting therapeutic mRNA in vivo with the ability to circumvent nuclease attack for treating intractable diseases. Herein, we developed a simple approach to attain one order of magnitude higher nuclease tolerability of mRNA through the formation of polyplex micelles (PMs) by combining ω-cholesteryl (ω-Chol)-poly (ethylene-glycol) (PEG)-polycation block copolymers with mRNA pre-hybridized with cholesterol (Chol)-tethered RNA oligonucleotides (Chol (+)-OligoRNA). Even one or a few short Chol (+)-OligoRNA anchors harboring along the 46-fold longer mRNA strand was sufficient to induce tight mRNA packaging in the PM core, as evidenced by Förster resonance energy transfer (FRET) measurement as well as by a longitudinal relaxation time (T1) measurement using NMR. These results suggest that Chol (+)-OligoRNA on mRNA strand serves as a node to attract ω-Chol moiety of the block copolymers to tighten the mRNA packaging in the PM core. These mRNA loaded PMs showed high tolerability against nuclease attack, and exerted appreciable protein translational activity in cultured cells without any inflammatory responses, achieved by shortening of the length of hybridizing Chol (+)-OligoRNAs to 17 nucleotides. Finally, the Chol (+)-OligoRNA-stabilized PM revealed efficient mRNA introduction into the mouse lungs via intratracheal administration, demonstrating in vivo utility of this formulation.


Assuntos
Colesterol/administração & dosagem , Micelas , Oligorribonucleotídeos/administração & dosagem , Polietilenoglicóis/administração & dosagem , RNA Mensageiro/administração & dosagem , Transfecção/métodos , Animais , Células Cultivadas , Portadores de Fármacos , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Biossíntese de Proteínas , Ribonucleases/metabolismo , Traqueia
13.
J Drug Target ; 27(5-6): 670-680, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30499743

RESUMO

The major issues in messenger (m)RNA delivery are rapid mRNA degradation in the extracellular and intracellular spaces, which decreases the efficiency and duration for protein expression from mRNA. Stabilization of mRNA carriers using environment-responsive crosslinkings has promises to overcome these issues. Herein, we fine-tuned the structure of disulphide crosslinkings, which are selectively cleaved in the intracellular reductive environment, using the mRNA-loaded polyplex micelles (PMs) prepared from poly(ethylene glycol)-poly(L-lysine) (PEG-PLys) block copolymers, particularly by focussing on cationic charge density after the crosslinking. Primary amino groups in PLys segment were partially thiolated in two ways: One is to introduce 3-mercaptopropionyl (MP) groups via amide linkage, resulting in the decreased cationic charge density [PEG-PLys(MP)], and the other is the conversion of amino groups to 1-amidine-3-mercaptopropyl (AMP) groups with preserving cationic charge density [PEG-PLys(AMP)]. Compared to non-crosslinked and PEG-PLys(MP) PMs, PEG-PLys(AMP) PM attained tighter mRNA packaging in the PM core, thereby improving mRNA nuclease tolerability in serum and intracellular spaces, and providing enhanced protein expression in cultured cells at the optimal crosslinking density. These findings highlight the importance of cationic charge preservation in installing crosslinking moieties, providing a rationale for mRNA carrier design in the molecular level.


Assuntos
Dissulfetos/metabolismo , Espaço Intracelular/metabolismo , Polímeros/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Técnicas de Transferência de Genes , Humanos , Micelas , Polietilenoglicóis/metabolismo , Polilisina/metabolismo , Transfecção/métodos
14.
Biomaterials ; 150: 162-170, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29031816

RESUMO

Messenger (m)RNA vaccines require a safe and potent immunostimulatory adjuvant. In this study, we introduced immunostimulatory properties directly into mRNA molecules by hybridizing them with complementary RNA to create highly immunogenic double stranded (ds)RNAs. These dsRNA formulations, comprised entirely of RNA, are expected to be safe and highly efficient due to antigen expression and immunostimulation occurring simultaneously in the same antigen presenting cells. In this strategy, design of dsRNA is important. Indeed, hybridization using full-length antisense (as)RNA drastically reduced translational efficiency. In contrast, by limiting the hybridized portion to the mRNA poly A region, efficient translation and intense immunostimulation was simultaneously obtained. The immune response to the poly U-hybridized mRNAs (mRNA:pU) was mediated through Toll-like receptor (TLR)-3 and retinoic acid-inducible gene (RIG)-I. We also demonstrated that mRNA:pU activation of mouse and human dendritic cells was significantly more effective than activation using single stranded mRNA. In vivo mouse immunization experiments using ovalbumin showed that mRNA:pU significantly enhanced the intensity of specific cellular and humoral immune responses, compared to single stranded mRNA. Our novel mRNA:pU formulation can be delivered using a variety of mRNA carriers depending on the purpose and delivery route, providing a versatile platform for improving mRNA vaccine efficiency.


Assuntos
Imunização/métodos , Poli A/química , Biossíntese de Proteínas/genética , RNA de Cadeia Dupla/química , RNA Mensageiro/química , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Hibridização de Ácido Nucleico/genética , Oligorribonucleotídeos Antissenso/química , Oligorribonucleotídeos Antissenso/genética , Poli A/genética , Poli U/química , Poli U/genética , Cultura Primária de Células , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , Vacinas de DNA/farmacologia
15.
Macromol Biosci ; 18(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29250901

RESUMO

Intracellular delivery of small interfering RNA (siRNA) is a long-standing challenge in oligonucleotide therapeutics. Herein, adenosine triphosphate (ATP)-responsive polyion complex micelles assembled from poly(ethylene glycol)-block-poly(l-lysine) (PEG-PLys) bearing 4-carboxy-3-fluorophenylboronic acid (FPBA) moiety in the PLys side chains (FPBA micelle) for the delivery of cholesterol-modified siRNA (Chol-siRNA) are described. The pKa of FPBA moiety is 7.2 and, therefore, it exists in equilibrium between negatively charged tetravalent and noncharged hydrophobic trivalent forms in physiological pH conditions. Each form cooperatively stabilizes the micelle in distinct modes, that is, a covalent ester-linkage between charged boronate and ribose functionality at 3' ends of Chol-siRNA and a hydrophobic interaction between noncharged boronic acid and Chol-siRNA. When exposed to ATP at a concentration associated with the intracellular environment, the Chol-siRNA/boronate linkage is readily cleaved to facilitate the release of Chol-siRNA into cytoplasm. In order to further optimize this switching capability, the effect of FPBA modification rate is studied for the resulting ATP-responsive behavior of the micelles. As a result, the range of 23-35% in the modification rate is found suitable to maximize the gene silencing efficiency, demonstrating the potential of the FPBA-modified micelles as ATP-responsive smart siRNA carrier systems.


Assuntos
Trifosfato de Adenosina/química , Colesterol/genética , Portadores de Fármacos/farmacologia , RNA Interferente Pequeno/farmacologia , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacologia , Ácidos Borônicos/química , Microambiente Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Portadores de Fármacos/química , Inativação Gênica/efeitos dos fármacos , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lisina/química , Lisina/farmacologia , Micelas , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , RNA Interferente Pequeno/genética
16.
J Am Chem Soc ; 139(51): 18567-18575, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29188718

RESUMO

Polyplexes as gene delivery carriers require integrated functionalities to modulate intracellular trafficking for efficient gene transfection. Herein, we developed plasmid DNA (pDNA)-loaded polyplex micelles (PMs) from poly(ethylene glycol)-based block catiomers derivatized with 4-carboxy-3-fluorophenylboronic acid (FPBA) and d-gluconamide to form pH- and ATP-responsive cross-linking in the core. These PMs exhibited robustness in the extracellular milieu and smooth endosomal escape after cellular uptake, and they facilitated pDNA decondensation triggered by increased ATP concentration inside of the cell. Laser confocal microscopic observation revealed that FPBA installation enhanced the endosomal escapability of the PMs; presumably, this effect resulted from the facilitated endo-/lysosomal membrane disruption triggered by the released block catiomers with hydrophobic FPBA moieties in the side chain from the PM at lower pH condition of endo-/lysosomes. Furthermore, the profile of intracellular pDNA decondensation from the PMs was monitored using Förster resonance energy transfer measurement by flow cytometry; these observations confirmed that PMs optimized for ATP-responsivity exerted effective intracellular decondensation of loaded pDNA to attain promoted gene transfection.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácidos Borônicos/química , Reagentes de Ligações Cruzadas/química , Gluconatos/química , Micelas , Transfecção/métodos , Linhagem Celular , DNA/genética , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lisossomos/metabolismo , Plasmídeos/genética , Polietilenoglicóis/química
17.
Bioconjug Chem ; 28(9): 2393-2409, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28772071

RESUMO

Protection of small interfering RNA (siRNA) against degradation and targeted delivery across the plasma and endosomal membranes to the final site of RNA interference (RNAi) are major aims for the development of siRNA therapeutics. Targeting for folate receptor (FR)-expressing tumors, we optimized siRNA polyplexes by coformulating a folate-PEG-oligoaminoamide (for surface shielding and targeting) with one of three lipo-oligoaminoamides (optionally tyrosine-modified, for optimizing stability and size) to generate ∼100 nm targeted lipopolyplexes (TLPs), which self-stabilize by cysteine disulfide cross-links. To better understand parameters for improved tumor-directed gene silencing, we analyzed intracellular distribution and siRNA release kinetics. FR-mediated endocytosis and endosomal escape of TLPs was confirmed by immuno-TEM. We monitored colocalization of TLPs with endosomes and lysosomes, and onset of siRNA release by time-lapse confocal microscopy; analyzed intracellular stability by FRET using double-labeled siRNA; and correlated results with knockdown of eGFPLuc protein and EG5 mRNA expression. The most potent formulation, TLP1, containing lipopolyplex-stabilizing tyrosine trimers, was found to unpack siRNA in sustained manner with up to 5-fold higher intracellular siRNA stability after 4 h compared to other TLPs. Unexpectedly, data indicated that intracellular siRNA stability instead of an early endosomal exit dominate as a deciding factor for silencing efficiency of TLPs. After i.v. administration in a subcutaneous leukemia mouse model, TLP1 exhibited ligand-dependent tumoral siRNA retention, resulting in 65% EG5 gene silencing at mRNA level without detectable adverse effects. In sum, tyrosine-modified TLP1 conveys superior protection of siRNA for an effective tumor-targeted delivery and RNAi in vivo.


Assuntos
Ácido Fólico/análogos & derivados , Leucemia/genética , Leucemia/terapia , Polietilenoglicóis/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Terapêutica com RNAi/métodos , Animais , Linhagem Celular Tumoral , Feminino , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/análise , Ácido Fólico/metabolismo , Humanos , Cinesinas/genética , Leucemia/metabolismo , Camundongos Nus , Polietilenoglicóis/análise , Interferência de RNA , Estabilidade de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
18.
J Biomater Sci Polym Ed ; 28(10-12): 1109-1123, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278046

RESUMO

Surface functionalization of nanoparticles is a crucial factor for nanoparticle-mediated drug and nucleic acid delivery. Particularly, the density of targeting ligands on nanoparticle significantly affects the affinity of nanoparticles to specific cellular surface (or receptor) through the multivalent binding effect. Herein, multilayered polyion complexes (mPICs) are prepared to possess varying densities of cyclic RGD peptide (cRGD) ligands for cancer-targeted small interfering RNA (siRNA) delivery. A template PIC is first prepared by mixing siRNAs with homo catiomers of N-substituted polyaspartamide bearing tetraethylenepentamine (PAsp(TEP)) in aqueous solution, followed by silica-coating through silicate condensation reaction. Then, silica-coated PICs (sPICs) are further covered with block catiomers of PAsp(TEP) and poly(ethylene glycol) (PEG) equipped with cRGD ligand. Successful preparation of targeted mPICs is confirmed from the changes in size and ζ-potential and the elemental analysis by transmission electron microscopy. Notably, the number of cRGD ligands per mPIC is regulated by altering the silicate concentration upon preparation of sPICs, which is confirmed by fluorescence correlation spectroscopy using fluorescent-labeled block catiomers. Ultimately, the targeted mPICs with a higher number of cRGD ligands demonstrate more efficient cellular uptake in cultured cancer cells, leading to enhanced gene silencing activity.


Assuntos
Nanopartículas/química , Peptídeos Cíclicos/química , Polietilenoglicóis/química , RNA Interferente Pequeno/química , Dióxido de Silício/química , Sequência de Bases , Células HeLa , Humanos , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...