Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prev Vet Med ; 208: 105768, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174447

RESUMO

When an infectious disease occurs in an area, early detection of infected farms is important to respond quickly and contain the outbreak on a small scale. Estimating the time window for the introduction of the infection is important for its prevention and control. The aim of this study was to estimate the farm-specific time window from the introduction of the highly pathogenic avian influenza (HPAI) virus into poultry farms using field data from the HPAI H5N8 outbreak in the 2020-2021 winter season in Japan. Daily mortality data from 12 broiler chicken farms during the outbreak were used for the analysis. A mathematical model (Susceptible-Exposed-Infectious-Removed, SEIR model) was applied to generate the within-flock transmission of HPAI. The model-predicted mortality was fitted to the observed excess mortality data induced by HPAI to estimate the farm-specific transmission rate and the time of virus introduction. The estimated value of the transmission rate in each farm was 1.449 day-1 in median (min: 0.661 day-1, max: 3.387 day-1). The time window from the introduction of the virus to notification in each farm was estimated at 14.0 days in median (min: 8.6 days, max: 24.1 days) in the deterministic model. In addition, in the stochastic model considering the randomness of transmission in the early phase of the outbreak, the upper value of 95 % credible interval of the time window ranged from 12 to 34 days, with a median of 21 days. The results suggest that although one to three weeks had elapsed on most farms until notification after the virus introduction, the time window could exceed three weeks considering the stochasticity of disease transmission. As for the potential farm characteristics affecting within-flock transmission, the transmission rate was smaller (p-value=0.02) and the estimated time window from introduction to notification was longer (p-value=0.02) when birds were older. This study provides reliable information for setting up a tracing period for a potential source farm and enhancing the efforts for early detection.


Assuntos
Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Galinhas , Fazendas , Estações do Ano , Japão/epidemiologia , Surtos de Doenças/veterinária , Surtos de Doenças/prevenção & controle , Doenças das Aves Domésticas/epidemiologia
2.
Prev Vet Med ; 198: 105554, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34872007

RESUMO

In 2018, classical swine fever (CSF) re-emerged in the Gifu Prefecture, central Japan, causing an on-going outbreak among wild boars and domestic pigs in the country. Consequently, oral vaccination for wild boar and compulsory vaccination for pig farms started in 2019. We have previously shown that, before vaccination in the Gifu Prefecture, the presence of CSF-infected wild boar near pig farms increased the risk of CSF transmission. This study aimed to re-evaluate the transmission risk from wild boars to pig farms under a vaccination program. The effectiveness of vaccination was evaluated by comparing the transmission risk estimated before and after the implementation of vaccinations. In this study, we focused on two affected areas, the Kanto (eastern Japan) and Kinki (west-central Japan) regions, in which eight of 11 infected farms were detected between the start of pig farm vaccinations and April 2021. Wild boar surveillance data from an area within a 50-km radius from the infected farms were used for analysis, consisting of 18,870 1-km grid cells (207 infected cells) in the Kanto region, and 15,677 cells (417 infected cells) in the Kinki region. The transmission rates in the post-vaccination period in the Kanto and Kinki regions were much lower than that in the pre-vaccination period in the Gifu Prefecture. The values of transmission kernels (h0, transmission rate at 0 km) in the Kanto and Kinki regions decreased to 1% of the transmission kernel in the pre-vaccination period. In the pre-vaccination period, the risk of infection within 300 days was almost 95 % when one infected grid cell was detected within 1 km of a pig farm. Meanwhile, in the post-vaccination period, the risk of infection within 300 days was approximately 5% when several infected cells were detected within 1 km of a pig farm. Considering the limited effect of oral vaccination for wild boar due to distribution limitations in the Kanto and Kinki regions, vaccination on pig farms may seems to have mainly reduced the transmission risk from wild boar. However, despite the implementation of vaccination, the risk of infection on pig farms remains present due to the immunity gap of weaning pigs. Therefore, strict biosecurity measures on pig farms and an appropriate vaccination program are required to prevent and control CSF spread.


Assuntos
Peste Suína Clássica , Doenças dos Suínos , Animais , Biosseguridade , Peste Suína Clássica/epidemiologia , Peste Suína Clássica/prevenção & controle , Fazendas , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Vacinação/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA