Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 24(8): e56227, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37341148

RESUMO

Hypoxia can occur in pancreatic ß-cells in type 2 diabetes. Although hypoxia exerts deleterious effects on ß-cell function, the associated mechanisms are largely unknown. Here, we show that the transcriptional repressor basic helix-loop-helix family member e40 (BHLHE40) is highly induced in hypoxic mouse and human ß-cells and suppresses insulin secretion. Conversely, BHLHE40 deficiency in hypoxic MIN6 cells or ß-cells of ob/ob mice reverses defects in insulin secretion. Mechanistically, BHLHE40 represses the expression of Mafa, encoding the transcription factor musculoaponeurotic fibrosarcoma oncogene family A (MAFA), by attenuating the binding of pancreas/duodenum homeobox protein 1 (PDX1) to its enhancer region. Impaired insulin secretion in hypoxic ß-cells was recovered by MAFA re-expression. Collectively, our work identifies BHLHE40 as a key hypoxia-induced transcriptional repressor in ß-cells that inhibit insulin secretion by suppressing MAFA expression.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Camundongos , Humanos , Animais , Secreção de Insulina , Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Camundongos Endogâmicos , Hipóxia/genética , Hipóxia/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
Cells ; 13(1)2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-38201252

RESUMO

Sirtuins (SIRT1-7 in mammals) are a family of NAD+-dependent lysine deacetylases and deacylases that regulate diverse biological processes, including metabolism, stress responses, and aging. SIRT7 is the least well-studied member of the sirtuins, but accumulating evidence has shown that SIRT7 plays critical roles in the regulation of glucose and lipid metabolism by modulating many target proteins in white adipose tissue, brown adipose tissue, and liver tissue. This review focuses on the emerging roles of SIRT7 in glucose and lipid metabolism in comparison with SIRT1 and SIRT6. We also discuss the possible implications of SIRT7 inhibition in the treatment of metabolic diseases such as type 2 diabetes and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Sirtuínas , Animais , Metabolismo dos Lipídeos , Glucose , Sirtuína 1 , Hidrolases , Mamíferos
3.
Nat Commun ; 13(1): 7439, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509749

RESUMO

Brown adipose tissue plays a central role in the regulation of the energy balance by expending energy to produce heat. NAD+-dependent deacylase sirtuins have widely been recognized as positive regulators of brown adipose tissue thermogenesis. However, here we reveal that SIRT7, one of seven mammalian sirtuins, suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions. Whole-body and brown adipose tissue-specific Sirt7 knockout mice have higher body temperature and energy expenditure. SIRT7 deficiency increases the protein level of UCP1, a key regulator of brown adipose tissue thermogenesis. Mechanistically, we found that SIRT7 deacetylates insulin-like growth factor 2 mRNA-binding protein 2, an RNA-binding protein that inhibits the translation of Ucp1 mRNA, thereby enhancing its inhibitory action on Ucp1. Furthermore, SIRT7 attenuates the expression of batokine genes, such as fibroblast growth factor 21. In conclusion, we propose that SIRT7 serves as an energy-saving factor by suppressing brown adipose tissue functions.


Assuntos
Tecido Adiposo Marrom , Sirtuínas , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Metabolismo Energético/fisiologia , Camundongos Knockout , RNA Mensageiro/metabolismo , Mamíferos/genética , Sirtuínas/genética , Sirtuínas/metabolismo
4.
Cells ; 11(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36429037

RESUMO

Sirtuins (SIRT1-7 in mammals) are evolutionarily conserved nicotinamide adenine dinucleotide-dependent lysine deacetylases/deacylases that regulate fundamental biological processes including aging. In this study, we reveal that male Sirt7 knockout (KO) mice exhibited an extension of mean and maximum lifespan and a delay in the age-associated mortality rate. In addition, aged male Sirt7 KO mice displayed better glucose tolerance with improved insulin sensitivity compared with wild-type (WT) mice. Fibroblast growth factor 21 (FGF21) enhances insulin sensitivity and extends lifespan when it is overexpressed. Serum levels of FGF21 were markedly decreased with aging in WT mice. In contrast, this decrease was suppressed in Sirt7 KO mice, and the serum FGF21 levels of aged male Sirt7 KO mice were higher than those of WT mice. Activating transcription factor 4 (ATF4) stimulates Fgf21 transcription, and the hepatic levels of Atf4 mRNA were increased in aged male Sirt7 KO mice compared with WT mice. Our findings indicate that the loss of SIRT7 extends lifespan and improves glucose metabolism in male mice. High serum FGF21 levels might be involved in the beneficial effect of SIRT7 deficiency.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Sirtuínas , Camundongos , Masculino , Animais , Longevidade , Resistência à Insulina/genética , Envelhecimento , Camundongos Knockout , Mamíferos , Sirtuínas/genética
5.
J Chem Inf Model ; 62(22): 5351-5360, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36334094

RESUMO

Designing highly selective molecules for a drug target protein is a challenging task in drug discovery. This task can be regarded as a multiobjective problem that simultaneously satisfies criteria for various objectives, such as selectivity for a target protein, pharmacokinetic endpoints, and drug-like indices. Recent breakthroughs in artificial intelligence have accelerated the development of molecular structure generation methods, and various researchers have applied them to computational drug designs and successfully proposed promising drug candidates. However, designing efficient selective inhibitors with releasing activities against various homologs of a target protein remains a difficult issue. In this study, we developed a de novo structure generator based on reinforcement learning that is capable of simultaneously optimizing multiobjective problems. Our structure generator successfully proposed selective inhibitors for tyrosine kinases while optimizing 18 objectives consisting of inhibitory activities against 9 tyrosine kinases, 3 pharmacokinetics endpoints, and 6 other important properties. These results show that our structure generator and optimization strategy for selective inhibitors will contribute to the further development of practical structure generators for drug designs.


Assuntos
Inteligência Artificial , Método de Monte Carlo , Desenho de Fármacos , Tirosina
6.
Nat Commun ; 13(1): 6092, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241662

RESUMO

Insulin signaling is mediated via a network of protein phosphorylation. Dysregulation of this network is central to obesity, type 2 diabetes and metabolic syndrome. Here we investigate the role of phosphatase binding protein Alpha4 (α4) that is essential for the serine/threonine protein phosphatase 2A (PP2A) in insulin action/resistance in adipocytes. Unexpectedly, adipocyte-specific inactivation of α4 impairs insulin-induced Akt-mediated serine/threonine phosphorylation despite a decrease in the protein phosphatase 2A (PP2A) levels. Interestingly, loss of α4 also reduces insulin-induced insulin receptor tyrosine phosphorylation. This occurs through decreased association of α4 with Y-box protein 1, resulting in the enhancement of the tyrosine phosphatase protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, adipocyte-specific knockout of α4 in male mice results in impaired adipogenesis and altered mitochondrial oxidation leading to increased inflammation, systemic insulin resistance, hepatosteatosis, islet hyperplasia, and impaired thermogenesis. Thus, the α4 /Y-box protein 1(YBX1)-mediated pathway of insulin receptor signaling is involved in maintaining insulin sensitivity, normal adipose tissue homeostasis and systemic metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Homeostase , Insulina/metabolismo , Masculino , Camundongos , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo
7.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012298

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disease that is characterized by irreversible memory loss and cognitive decline. The deposition of amyloid-ß (Aß), especially aggregation-prone Aß42, is considered to be an early event preceding neurodegeneration in AD. Sirtuins (SIRT1-7 in mammals) are nicotinamide adenine dinucleotide-dependent lysine deacetylases/deacylases, and several sirtuins play important roles in AD. However, the involvement of SIRT7 in AD pathogenesis is not known. Here, we demonstrate that SIRT7 mRNA expression is increased in the cortex, entorhinal cortex, and prefrontal cortex of AD patients. We also found that Aß42 treatment rapidly increased NADPH oxidase 4 (NOX4) expression at the post-transcriptional level, and induced reactive oxygen species (ROS) production and apoptosis in neuronal SH-SY5Y cells. In contrast, SIRT7 knockdown inhibited Aß42-induced ROS production and apoptosis by suppressing the upregulation of NOX4. Collectively, these findings suggest that the inhibition of SIRT7 may play a beneficial role in AD pathogenesis through the regulation of ROS production.


Assuntos
Doença de Alzheimer , Neuroblastoma , Doenças Neurodegenerativas , Sirtuínas , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Humanos , NADPH Oxidase 4/genética , Fragmentos de Peptídeos , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/genética
8.
Dent Mater J ; 41(4): 624-632, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35584937

RESUMO

Recently, the potential of ß-cyclodextrin-thread acid-degradable polyrotaxane (AdPRX) has been emphasized as a therapeutic agent for cholesterol-related metabolic disorders. In this study, we investigated whether carboxymethyl carbamate-modified AdPRX (CMC-AdPRX) can be used for adsorption to calcium phosphate to treat bone diseases. We first synthesized CMC-AdPRX and used it to coat the calcium phosphate plate. RAW264.7 cells were then differentiated into osteoclasts via a receptor activator of nuclear factor-κB ligand, and the number of osteoclasts and the area of absorption lacunae were determined. The number of tartrate-resistant acid phosphatase-positive multinucleated cells was reduced on the CMC-AdPRX-coated plate. The area of the absorption lacunae was smaller with CMC-AdPRX than with AdPRX, which was not carboxy-modified. Our results suggest that CMC-AdPRX can adsorb to calcium phosphate and act on differentiated osteoclasts to suppress their functional expression.


Assuntos
Reabsorção Óssea , Rotaxanos , beta-Ciclodextrinas , Fosfatase Ácida/metabolismo , Animais , Fosfatos de Cálcio/farmacologia , Diferenciação Celular , Isoenzimas/metabolismo , Camundongos , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Células RAW 264.7 , Rotaxanos/farmacologia , Fosfatase Ácida Resistente a Tartarato/metabolismo , beta-Ciclodextrinas/farmacologia
9.
Vision Res ; 196: 108027, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35248888

RESUMO

The present study investigated hemispheric symmetry of cortical functions, in terms of the chromatic motion mechanism. A series of experiments examined the visual sensitivities to chromatic and achromatic stimuli with or without motion, presented in either of the two (left or right) visual hemifields. Experiment 1 measured, individually, the subjective isoluminance of red/green stimuli for each visual field. Experiment 2 examined the visual field differences of the detection thresholds for static stimuli with the isoluminant color contrast and achromatic luminance contrast. Subsequent experiments measured contrast thresholds for motion detection (Experiment 3) and motion direction discrimination (Experiment 4) with both chromatic and achromatic stimuli. No visual field differences between thresholds were found in Experiments 1 and 2, whereas in Experiments 3 and 4, thresholds for the chromatic conditions were found to be lower in the left than in the right visual field, suggesting functional lateralization of the early motion mechanism with chromatic information in motion detection and direction discrimination.


Assuntos
Percepção de Movimento , Percepção de Cores , Sensibilidades de Contraste , Humanos , Campos Visuais
10.
J Diabetes Investig ; 12(10): 1765-1774, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33955199

RESUMO

AIMS/INTRODUCTION: Peroxisome proliferator-activated receptor (PPAR)-γ2 is a transcription factor crucial for regulating adipogenesis and glucose/lipid metabolism, and synthetic PPARγ ligands, such as thiazolidinediones, are effective oral medication for type 2 diabetes. Sirtuin 7 (SIRT7), a nicotinamide adenine dinucleotide-dependent deacetylase, also controls metabolism. However, it is not known whether SIRT7 regulates the function of PPARγ2 by its deacetylation. MATERIALS AND METHODS: Physical interaction between SIRT7 and PPARγ2, the effect of SIRT7 on PPARγ2 acetylation, and the deacetylation residue targeted by SIRT7 were investigated. The effects of PPARγ2 K382 acetylation on lipid accumulation, gene expression in C3H10T1/2 cell-derived adipocytes, and ligand-dependent transactivation activity were also evaluated. RESULTS: We demonstrated that SIRT7 binds to PPARγ2 and deacetylates PPARγ2 at K382. C3H10T1/2-derived adipocytes expressing PPARγ2K382Q (a mimic of acetylated K) accumulated much less fat than adipocytes expressing wild-type PPARγ2 or PPARγ2K382R (a mimic of nonacetylated K). Global gene expression analysis of adipocytes expressing PPARγ2K382Q revealed that K382Q caused the dysregulation of a set of genes involved in lipogenesis, including Srebp1c, Acaca, Fasn, and Scd1. The rosiglitazone-dependent transcriptional activity of PPARγ2K382Q was reduced compared with that of PPARγ2K382R . CONCLUSION: Our findings indicate that SIRT7-dependent PPARγ2 deacetylation at K382 controls lipogenesis in adipocytes.


Assuntos
Adipócitos/metabolismo , Lipogênese , PPAR gama/metabolismo , Sirtuínas/metabolismo , Acetilação , Células HEK293 , Humanos
11.
Circ J ; 85(12): 2232-2240, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33678753

RESUMO

BACKGROUND: Sirt7 is a recently identified sirtuin and has important roles in various pathological conditions, including cancer progression and metabolic disorders. It has previously been reported that Sirt7 is a key molecule in acute myocardial wound healing and pressure overload-induced cardiac hypertrophy. In this study, the role of Sirt7 in neointimal formation after vascular injury is investigated.Methods and Results:Systemic (Sirt7-/-) and smooth muscle cell-specific Sirt7-deficient mice were subjected to femoral artery wire injury. Primary vascular smooth muscle cells (VSMCs) were isolated from the aorta of wild type (WT) and Sirt7-/-mice and their capacity for cell proliferation and migration was compared. Sirt7 expression was increased in vascular tissue at the sites of injury. Sirt7-/-mice demonstrated significant reduction in neointimal formation compared to WT mice. In vitro, Sirt7 deficiency attenuated the proliferation of serum-induced VSMCs. Serum stimulation-induced upregulation of cyclins and cyclin-dependent-kinase 2 (CDK2) was significantly attenuated in VSMCs of Sirt7-/-compared with WT mice. These changes were accompanied by enhanced expression of the microRNA 290-295 cluster, the translational negative regulator of CDK2, in VSMCs of Sirt7-/-mice. It was confirmed that smooth muscle cell-specific Sirt7-deficient mice showed significant reduction in neointima compared with control mice. CONCLUSIONS: Sirt7 deficiency attenuates neointimal formation after vascular injury. Given the predominant role in vascular neointimal formation, Sirt7 is a potentially suitable target for treatment of vascular diseases.


Assuntos
Sirtuínas , Lesões do Sistema Vascular , Animais , Movimento Celular , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Sirtuínas/genética , Sirtuínas/metabolismo , Lesões do Sistema Vascular/genética
12.
Biochim Biophys Acta Mol Basis Dis ; 1866(11): 165898, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711050

RESUMO

Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor required for normal insulin secretion and maintenance of ß-cell number in the pancreas. HNF1α is also expressed in pancreatic α-cells, but its role in these cells is unknown. The aim of this study was to clarify the role of HNF1α in α-cells. Male Hnf1a+/- mice with a mixed background were backcrossed to outbred ICR mice. Glucose tolerance, glucagon and insulin secretion, islet histology, and gene expression were investigated in ICR Hnf1a-/- and Hnf1a+/+ mice. Regulation of Slc5a1 (encoding sodium glucose cotransporter 1 [SGLT1]) expression by HNF1α and the effect of SGLT1 inhibition on glucagon secretion were also explored. ICR Hnf1a-/- mice were glucose intolerant and exhibited impaired glucose-stimulated insulin secretion. The ß-cell area of ICR mice was decreased in Hnf1a-/- mice, but the α-cell area in the pancreas was similar between Hnf1a-/- and Hnf1a+/+ mice. Hnf1a-/- mice showed higher fasting glucagon levels and exhibited inadequate suppression of glucagon after glucose load. In addition, glucagon release in response to hypoglycemia was impaired in Hnf1a-/- mice, and glucagon secretion after 1.1 mM glucose administration, was also decreased in Hnf1a-/- islets. Slc5a1 expression was decreased in Hnf1a-/- islets, while HNF1α activated the Slc5a1 promoter in αTC1-6 cells. Inhibition of SGLT1 suppressed 1.1 mM glucose-stimulated glucagon secretion in islets and αTC1-6 cells, but SGLT1 inhibition had no additional inhibitory effect in HNF1α-deficient cells. Our findings indicate that HNF1α modulates glucagon secretion in α-cells through the regulation of Slc5a1.


Assuntos
Células Secretoras de Glucagon/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , Peso Corporal/genética , Peso Corporal/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Imunofluorescência , Glucagon/sangue , Fator 1-alfa Nuclear de Hepatócito/genética , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transportador 1 de Glucose-Sódio/genética
13.
Biochem Biophys Res Commun ; 530(3): 500-507, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32595040

RESUMO

Recent evidence has revealed a novel signaling mechanism through which brown adipose tissue (BAT)-derived exosomal microRNAs (miRNAs) influence hepatic gene expression. Here, we uncover neuronal control of these miRNAs and identify exosomal miR-132-3p as a regulator of hepatic lipogenesis under cold stress conditions. Norepinephrine, a sympathetic nervous system neurotransmitter mediating cold-induced BAT activation, altered the composition of brown adipocyte (BAC)-derived exosomal miRNAs; among them, miR-132-3p was significantly induced. The isolated BAC-derived exosomes suppressed expression of hepatic Srebf1, a predicted target of miR-132-3p. In an indirect co-culture system, BACs suppressed expression of hepatic Srebf1 and its target lipogenic genes; this effect was not seen with miR-132-3p-inhibited BACs. Srebf1 was experimentally validated as an miR-132-3p target. Cold stimuli consistently induced miR-132-3p expression in BAT and attenuated Srebf1 expression in the liver. Our results suggest that BAT-derived exosomal miR-132-3p acts as an endocrine factor that regulates hepatic lipogenesis for cold adaptation.


Assuntos
Adipócitos Marrons/metabolismo , Fígado/metabolismo , MicroRNAs/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Células Cultivadas , Regulação para Baixo , Exossomos/genética , Lipogênese , Masculino , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Regulação para Cima
14.
Hypertension ; 75(1): 98-108, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735083

RESUMO

Sirt (Sirtuin) 7, the most recently identified mammalian sirtuin, has been shown to contribute to appropriate wound healing processes after acute cardiovascular insult. However, its role in the development of cardiac remodeling after pressure overload is unclear. Cardiomyocyte-specific Sirt7-knockout and control mice were subjected to pressure overload induced by transverse aortic constriction. Cardiac hypertrophy and functions were then examined in these mice. Sirt7 protein expression was increased in myocardial tissue after pressure overload. Transverse aortic constriction-induced increases in heart weight/tibial length were significantly augmented in cardiomyocyte-specific Sirt7-knockout mice compared with those of control mice. Histological analysis showed that the cardiomyocyte cross-sectional area and fibrosis area were significantly larger in cardiomyocyte-specific Sirt7-deficient mice. Cardiac contractile functions were markedly decreased in cardiomyocyte-specific Sirt7-deficient mice. Mechanistically, we found that Sirt7 interacted directly with GATA4 and that the exacerbation of phenylephrine-induced cardiac hypertrophy by Sirt7 knockdown was decreased by GATA4 knockdown. Sirt7 deacetylated GATA4 in cardiomyocytes and regulated its transcriptional activity. Interestingly, we demonstrated that treatment with nicotinamide mononucleotide, a known key NAD+ intermediate, ameliorated agonist-induced cardiac hypertrophies in a Sirt7-dependent manner in vitro. Sirt7 deficiency in cardiomyocytes promotes cardiomyocyte hypertrophy in response to pressure overload. Sirt7 exerts its antihypertrophic effect by interacting with and promoting deacetylation of GATA4.


Assuntos
Cardiomegalia/metabolismo , Fator de Transcrição GATA4/metabolismo , Miócitos Cardíacos/metabolismo , Sirtuínas/metabolismo , Acetilação , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Fator de Transcrição GATA4/genética , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Sirtuínas/genética
15.
Biomed Res ; 40(5): 189-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31597904

RESUMO

Sphingomyelin is a major lipid of the plasma membrane and is enriched in microdomains of the plasma membrane that are critical for signal transduction. However, the function of sphingomyelin in the cell membrane of osteoblasts has not been clarified. Therefore, we examined how sphingomyelin synthase 2 (SMS2) affects osteoclast differentiation by osteoblasts. We knocked down the expression of SMS2 with siRNA targeting the Sgms2 gene in mouse primary osteoblasts. The effects of SMS2 knockdown in osteoblasts were examined using polymerase chain reaction and western blotting. The knockdown of SMS2 suppressed the formation of TRAP-positive multinucleated cells by co-culture of osteoblasts and bone marrow cells compared to the control. We found that receptor activator of nuclear factor κB ligand (RANKL) mRNA expression was significantly reduced by 1,25(OH)2D3 stimulation in SMS2 siRNA osteoblasts. The knockdown of SMS2 repressed the expression of retinoid-X-receptor-α (RXRα) regardless of 1,25(OH)2D3 stimulation. TRAP-positive multinucleated cell formation was significantly reduced by RXRα siRNA in osteoblasts in a co-culture system. These results suggest that SMS2 regulates osteoclast differentiation by inducing RANKL expression via RXRα.


Assuntos
Regulação da Expressão Gênica , Osteoblastos/metabolismo , Osteogênese/genética , Ligante RANK/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Técnicas de Silenciamento de Genes , Inativação Gênica , Camundongos , Osteoclastos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo
16.
Biochim Biophys Acta Mol Cell Res ; 1866(9): 1355-1367, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075303

RESUMO

Sirtuin 7 (SIRT7) is an NAD+-dependent lysine deacetylase that regulates diverse biological processes. We recently observed that SIRT7 deficiency suppresses the nuclear accumulation of p65, which is a component of nuclear factor kappa B. However, the underlying molecular mechanism remains elusive. In this study, we demonstrated that SIRT7 interacts with a small GTPase, Ras-related nuclear antigen (Ran), and deacetylates Ran at K37. The nuclear export of p65 was facilitated in SIRT7-deficient fibroblast cells, while the nuclear export was inhibited in SIRT7-deficient cells expressing K37R-Ran (deacetylation-mimicking mutant). Additionally, the nuclear export of p65 in wild-type fibroblast cells was promoted by K37Q-Ran (acetylation-mimicking mutant). K37Q-Ran exhibited an increased ability to bind to chromosome region maintenance 1 (CRM1), which is a major nuclear receptor that mediates the export of cargo proteins, and enhanced the binding between p65 and CRM1. These data suggest that SIRT7 is a lysine deacetylase that targets the K37 residue of Ran to suppress the nuclear export of p65.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Sirtuínas/metabolismo , Fator de Transcrição RelA/metabolismo , Acetilação , Animais , Ácidos Graxos Insaturados/farmacologia , Fibroblastos/efeitos dos fármacos , GTP Fosfo-Hidrolases , Expressão Gênica , Células HEK293 , Humanos , Carioferinas/metabolismo , Camundongos , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/metabolismo , Sirtuínas/genética , Proteína Exportina 1
17.
Nat Genet ; 51(5): 921, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948796

RESUMO

In the version of the paper initially published, Fig. 5a was inadvertently duplicated and presented as both Fig. 5a and 5f, and the correct image for Fig. 5f was omitted. Images of the original and corrected figure panels are shown in the correction notice.

18.
Iperception ; 9(4): 2041669518777259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090320

RESUMO

When the objects in a typical stream-bounce stimulus are made to rotate on a circular trajectory, not two but four percepts can be observed: streaming, bouncing, clockwise rotation, and counterclockwise rotation, often with spontaneous reversals between them. When streaming or bouncing is perceived, the objects seem to move on individual, opposite trajectories. When rotation is perceived, however, the objects seem to move in unison on the same circular trajectory, as if constituting the edges of a virtual pane that pivots around its axis. We called this stimulus the Polka Dance stimulus. Experiments showed that with some viewing experience, the viewer can "hold" the rotation percepts. Yet even when doing so, a short sound at the objects' point of coincidence can induce a bouncing percept. Besides this fast percept switching from rotation to bouncing, an external stimulus might also induce slower rotation direction switches, from clockwise to counterclockwise, or vice versa.

19.
Nat Commun ; 9(1): 2833, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026585

RESUMO

SP7/Osterix (OSX) is a master regulatory transcription factor that activates a variety of genes during differentiation of osteoblasts. However, the influence of post-translational modifications on the regulation of its transactivation activity is largely unknown. Here, we report that sirtuins, which are NAD(+)-dependent deacylases, regulate lysine deacylation-mediated transactivation of OSX. Germline Sirt7 knockout mice develop severe osteopenia characterized by decreased bone formation and an increase of osteoclasts. Similarly, osteoblast-specific Sirt7 knockout mice showed attenuated bone formation. Interaction of SIRT7 with OSX leads to the activation of transactivation by OSX without altering its protein expression. Deacylation of lysine (K) 368 in the C-terminal region of OSX by SIRT7 promote its N-terminal transactivation activity. In addition, SIRT7-mediated deacylation of K368 also facilitates depropionylation of OSX by SIRT1, thereby increasing OSX transactivation activity. In conclusion, our findings suggest that SIRT7 has a critical role in bone formation by regulating acylation of OSX.


Assuntos
Doenças Ósseas Metabólicas/genética , Lisina/metabolismo , Osteoblastos/metabolismo , Sirtuínas/genética , Fator de Transcrição Sp7/genética , Ativação Transcricional , Acilação , Animais , Densidade Óssea , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Diferenciação Celular , Linhagem Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/genética , Transdução de Sinais , Sirtuínas/deficiência , Fator de Transcrição Sp7/metabolismo
20.
Sci Rep ; 8(1): 5927, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651144

RESUMO

Cisplatin-induced acute kidney injury (AKI) has been recognized as one of cisplatin's serious side effects, limiting its use in cancer therapy. Sirtuin 1 (SIRT1) and SIRT3 play protective roles against cisplatin-induced kidney injury. However, the role of SIRT7 in cisplatin-induced kidney injury is not yet known. In this study, we found that Sirt7 knockout (KO) mice were resistant to cisplatin-induced AKI. Furthermore, our studies identified that loss of SIRT7 decreases the expression of tumor necrosis factor-α (TNF-α) by regulating the nuclear expression of the transcription factor nuclear factor kappa B. It has been reported that cisplatin-induced nephrotoxicity is mediated by TNF-α. Our results indicate that SIRT7 plays an important role in cisplatin-induced AKI and suggest the possibility of SIRT7 as a novel therapeutic target for cisplatin-induced nephrotoxicity.


Assuntos
Injúria Renal Aguda/genética , Cisplatino/efeitos adversos , Inflamação/genética , Sirtuínas/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Apoptose/genética , Cisplatino/uso terapêutico , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/lesões , Rim/patologia , Camundongos , Camundongos Knockout , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Sirtuína 3 , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...