Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Cell ; 85: 102214, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37690258

RESUMO

Skin infections by pathogenic microorganisms are a serious problem due to the potential of dissemination through the bloodstream to various organs causing toxic effects that may be up to mortality. Escherichia coli (E. coli) is one of the most predominant Gram-negative bacterial species present globally with great attention for investigation. The current study is designed to investigate the possible role of adipose tissue-derived stem cells (ADSCs), as well as natural products such as Trichoderma viride (T. viride) extract, Saccharomyces boulardii (S. boulardii) solution in the enhancement of wound healing process in the infected skin with E. coli. Ninety-six female rats were divided into 8 groups (12 animal/group): normal skin, wounded skin, wounded skin infected with E. coli, infected-wounded skin treated by ADSCs, infected-wounded skin treated by T. viride extract, infected-wounded skin treated by S. boulardii solution, infected-wounded skin treated a combination of treatments, infected-wounded skin treated by gentamicin. At day 21 animal weights and bacterial count were detected and compared. Animals were sacrificed and skin from various groups was investigated using a light microscope for sections stained by (hematoxylin eosin, Masson trichrome, and PCNA) as well as transmission electron microscopy. Pro-inflammatory (IL-1ß, TNF- α, and IL-13), anti-inflammatory cytokine (IL-4), and antioxidant enzymes (Superoxide dismutase, glutathione, and catalase) were assessed in various groups revealing that ADSCs lightly shift levels of these parameters in various rat groups to regular levels, while administration of T. viride extract, S. boulardii solution, their combination with ADSCs and gentamicin treatment drive the tested cytokines and enzymes to significant levels similar to a normal level where combination therapy gave the best result. The current findings revealed the possibility of using certain natural products as possible substitutes to regularly applied antibiotics with successive protective results in the wound infection model.


Assuntos
Produtos Biológicos , Infecção dos Ferimentos , Ratos , Feminino , Animais , Escherichia coli , Cicatrização , Células-Tronco , Citocinas , Produtos Biológicos/farmacologia , Gentamicinas
2.
Microorganisms ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375103

RESUMO

The emergence of bacteria that are resistant to several antibiotics has represented a serious hazard to human health globally. Bioactive metabolites from medicinal plants have a wide spectrum of therapeutic possibilities against resistant bacteria. Therefore, this study was performed to investigate the antibacterial efficacy of various extracts of three medicinal plants as Salvia officinalis L., Ziziphus spina-christi L., and Hibiscus sabdariffa L. against pathogenic Gram-negative Enterobacter cloacae (ATCC13047), Pseudomonas aeruginosa (RCMB008001), Escherichia coli (RCMB004001), and Gram-positive Staphylococcus aureus (ATCC 25923), bacteria using the agar-well diffusion method. Results revealed that, out of the three examined plant extracts, the methanol extract of H. sabdariffa L. was the most effective against all tested bacteria. The highest growth inhibition (39.6 ± 0.20 mm) was recorded against E. coli. Additionally, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the methanol extract of H. sabdariffa were detected in the case of all tested bacteria. Moreover, an antibiotic susceptibility test revealed that all tested bacteria showed multidrug resistance (MDR). While 50% of tested bacteria were sensitive and 50% were intermediately sensitive to piperacillin/tazobactam (TZP) based on the inhibition zone but still less than the extract. Synergistic assay demonstrated the promising role of using a combination of H. sabdariffa L. and (TZP) against tested bacteria. A surface investigation using a scanning electron microscope of the E. coli treated with TZP, extract, or a combination of the two revealed extremely considerable bacterial cell death. In addition, H. sabdariffa L. has a promising anticancer role versus Caco-2 cells with IC50 of 17.51 ± 0.07 µg/mL and minimal cytotoxicity upon testing versus Vero cells with CC50 of 165.24 ± 0.89 µg/mL. Flow cytometric analysis confirmed that H. sabdariffa extract significantly increased the apoptotic rate of Caco-2-treated cells compared to the untreated group. Furthermore, GC-MS analysis confirmed the existence of various bioactive components in the methanol hibiscus extract. Utilizing molecular docking with the MOE-Dock tool, binding interactions between n-Hexadecanoic acid, hexadecanoic acid-methyl ester, and oleic acid, 3-hydroxypropyl ester were evaluated against the target crystal structures of E. coli (MenB) (PDB ID:3T88) and the structure of cyclophilin of a colon cancer cell line (PDB ID: 2HQ6). The observed results provide insight into how molecular modeling methods might inhibit the tested substances, which may have applications in the treatment of E. coli and colon cancer. Thus, H. sabdariffa methanol extract is a promising candidate to be further investigated for developing alternative natural therapies for infection treatment.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37132312

RESUMO

BACKGROUND: The most significant sexually transmissible fungal disease, semen candidiasis, is caused by Candida albicans and impacts male reproductive potential. Actinomycetes are a group of microorganisms that could be isolated from various habitats and used for the biosynthesis of various nanoparticles with biomedical applications. OBJECTIVE: Testing antifungal activity of biosynthesized Ag nanoparticles versus isolated C. albicans from semen as well as its anticancer activity versus the Caco-2 cell line. METHODS: Screening 17 isolated actinomycetes for the biosynthesis of Ag nanoparticle biosynthesis. Characterization of biosynthesized nanoparticles, testing its anti-Candida albicans, and antitumor activity. RESULTS: Streptomyces griseus was the isolate that identified silver nanoparticles using UV, FTIR, XRD and TEM. Biosynthesized nanoparticles have promising anti-Candida albicans with MIC (125 ± 0.8) µg/ml and accelerate apoptotic rate versus Caco-2 cells (IC50 = 7.30 ± 0.54 µg/ml) with minimal toxicity (CC50 = 142.74 ± 4.71 µg/ml) versus Vero cells. CONCLUSION: Certain actinomycetes could be used for the biosynthesis of nanoparticles with successive antifungal and anticancer activity to be verified by in vivo studies.

4.
Biomed Res Int ; 2023: 6934398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090192

RESUMO

Background: The perennial plant Hypericum perforatum is widely distributed around the world. It has been used for many years in conventional medicine to treat a variety of illnesses, including stress, mild to moderate depression, and minor injuries. This study examined the antimicrobial activity of the H. perforatum total extract and its fractions (n-hexane, ethyl acetate, chloroform, and aqueous) against multi-drug-resistant (MDR) isolates that were gathered from clinical samples, including methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Klebsiella pneumonia. Materials and Methods: Aerial parts of H. perforatum were collected and extracted using various solvents and were tested versus different isolated bacterial species. The inhibition zone of tested extracts was detected using an agar diffusion assay, and MICs were measured. Phytochemical analysis of promising H. perforatum extract was done using LC-ESI-MS/MS. Ultrastructure examination for the most altered bacteria used transmission electron microscopy. Antioxidant assays were done using DPPH and ABTS scavenging capacity methods. Cytotoxicity was reported versus Vero cells. Results: Different extracts of H. perforatum showed promising antibacterial activity against the pathogens. While the subfractions of the total extract were observed to show lesser inhibition zones and higher MIC values than the total extract of H. perforatum against MDR strains, the total extract of H. perforatum demonstrated the most potent antimicrobial action with an inhibition zone range of 17.9-27.9 mm. MDR-K. pneumoniae was discovered to be the most susceptible strain, which is consistent with the antibacterial inhibitory action of H. perforatum whole extract. Additionally, after treatment at the minimum inhibitory concentration (MIC 3.9 µg/ml), the transmission electron microscope showed alterations in the ultrastructure of the K. pneumoniae cells. Methanol extract from H. perforatum has a CC50 value of 976.75 µg/ml. Conclusion: Future inhibitors that target MDR strains may be revealed by these findings. Additionally, the extracts that were put to the test demonstrated strong antioxidant effects as shown by DPPH or ABTS radical-scavenging assays.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Resistência a Múltiplos Medicamentos , Hypericum , Extratos Vegetais , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Chlorocebus aethiops , Hypericum/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Células Vero , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
5.
J Taibah Univ Med Sci ; 18(2): 400-412, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37102074

RESUMO

Objectives: Tellurium has received substantial attention for its remarkable properties. This study performed in vitro and in vivo testing of the antibacterial action of tellurium nanoparticles biosynthesized in actinomycetes against methicillin-resistant Staphylococcus aureus (MRSA), a common blood bacterial pathogen. Methods: Nine actinomycete isolates were tested for their potential to reduce potassium tellurite (K2TeO3) and form tellurium nanoparticles (TeNPs). The most efficient actinomycete isolate in producing Tellerium nanoparticles was identified through molecular protocols. The generated TeNPs were characterized using UV, TEM, EDX, XRD and FTIR. The bacterial species implicated in bloodstream infections were detected at El Hussein Hospital. Bacterial identification and antibiotic susceptibility testing were performed using Vitek 2. An animal infection model was used to test the efficacy of the produced TeNPs against the most commonly isolated methicillin-resistant S. aureus using survival assays, colony counting, cytokine assessment and biochemical testing. Results: The most efficient actinomycete isolate was identified as Streptomyces graminisoli and given the accession number (OL773539). The mean particle size of the produced TeNPs was 21.4 nm, and rods and rosette forms were observed. Methicillin-resistant S. aureus (MRSA) was the main bacterium (60%) causing blood stream infections, and was followed by Escherichia coli (25%) and Klebsiella pneumoniae (15%). The produced TeNPs were tested against MRSA, the bacterium most frequently isolated from blood, and showed a promising action inhibition zone of 24 ± 0.7 mm and an MIC of 50 µg/ml. An animal infection model indicated the promise of TeNPs alone or in combination with standard drugs to combat MRSA in a rat intravenous infection model. Conclusion: TeNPs combined with vancomycin have successive impact to combat bacteremia for further verification of results.

6.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36290683

RESUMO

Saussurea costus is a medicinal plant with different bioactive compounds that have an essential role in biomedicine applications, especially in Arab nations. However, traditional extraction methods for oils can lead to the loss of some volatile and non-volatile oils. Therefore, this study aimed to optimize the supercritical fluid extraction (SFE) of oils from S. costus at pressures (10, 20, and 48 MPa). The results were investigated by GC/MS analysis. MTT, DPPH, and agar diffusion methods assessed the extracted oils' anticancer, antioxidant, and antimicrobial action. GC/MS results showed that elevated pressure from 10 to 20 and 48 MPa led to the loss of some valuable compounds. In addition, the best IC50 values were recorded at 10 MPa on HCT, MCF-7, and HepG-2 cells at about 0.44, 0.46, and 0.74 µg/mL, respectively. In contrast, at 20 MPa, the IC50 values were about 2.33, 6.59, and 19.0 µg/mL, respectively, on HCT, MCF-7, and HepG-2 cells, followed by 48 MPa, about 36.02, 59.5, and 96.9 µg/mL. The oil extract at a pressure of 10 MPa contained much more of á-elemene, dihydro-à-ionone, patchoulene, á-maaliene, à-selinene, (-)-spathulenol, cedran-diol, 8S,13, elemol, eremanthin, á-guaiene, eudesmol, ç-gurjunenepoxide-(2), iso-velleral, and propanedioic acid and had a higher antioxidant activity (IC50 14.4 µg/mL) more than the oil extract at 20 and 48 MPa. In addition, the inhibitory activity of all extracts was higher than gentamicin against all tested bacteria. One of the more significant findings from this study is low pressure in SFE enhancement, the extraction of oils from S. costus, for the first time. As a result, the SFE is regarded as a good extraction technique since it is both quick and ecologically friendly. Furthermore, SFE at 10 MPa increased the production and quality of oils, with high antioxidant activity and a positive effect on cancer cells and pathogens.

7.
J Taibah Univ Med Sci ; 17(5): 765-773, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36050949

RESUMO

Objectives: Galleria mellonella assimilates beeswax using many gut enzymes; however, high doses of gamma radiation have been used to eradicate such pests, affecting its life cycle. In vitro studies of irradiated extracts of G. mellonella against bacterial species as well as three tumour cell lines are demonstrated in the present study. The antibacterial and antitumour effects are compared with those of the non-irradiated Galleria mellonella larval extract. Methods: The effect of different dose levels of gamma irradiation, ranging from 2 to 8 Gy, was tested on G. mellonella lipase, protease, and acid phosphate activities. The antimicrobial activity of un-irradiated and irradiated G. mellonella larval extracts was tested against different gram-positive and gram-negative bacteria and some fungi. The antitumour action was tested against different tumour cell lines. A cytotoxicity assay was performed on normal and irradiated larval extracts against normal human lung fibroblast cells. A microscopic examination of Streptococcus mutants and HepG-2 was performed using transmission and scanning electron microscopy. Results: Optimum results were obtained at 6 Gy, which enhanced maximum enzymatic activity. Maximum antimicrobial activity was obtained against Streptococcus mutants with MIC 31.25 µg/ml at a dose of 6 Gy. A microscopic examination depicted an apoptotic process for irradiated G. mellonella larvae with either Streptococcus mutants or HepG-2. Conclusion: The present study shows a synergistic relationship between the G. mellonella larval extract and a 6 Gy radiation dose for further biomedical applications.

8.
Biomed Res Int ; 2022: 7513155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898689

RESUMO

Background: Z. coccineum is a facultative plant with many medicinal applications. This study examined the anti-inflammatory activity of Zygophyllum coccineum (Z. coccineum) in an arthritis animal model. Materials and Methods: Seventy-Six Wistar Albino rats of either sex randomly divided into six groups (12/each). The inflammation model was done using Complete Freund's Adjuvant in albino rats. The anti-inflammatory activities of the extract were estimated at different dose levels (15.6, 31, and 60 mg/kg) as well as upon using methotrexate (MTX) as a standard drug (0.3 mg/kg). Paw volume and arthritis index scores have been tested in all examined animals' treatments. Histological examination of joints was also performed. Flow cytometric studies were done to isolated osteoclasts. Cytokines assay as well as biochemical testing was done in the examined samples. Results. In vitro studies reported an IC50 of 15.6 µg/ml for Z. coccineum extract in lipoxygenase inhibition assay (L.O.X.). Moreover, it could be noticed that isorhamnetin-3-O-glucoside, tribuloside, and 7-acetoxy-4-methyl coumarin were the most common compounds in Z. coccineum extract separated using L.C.-ESI-TOF-M.S. (liquid chromatography-electrospray ionization ion-trap time-of-flight mass spectrometry). Microscopic examinations of synovial tissue and hind limb muscles revealed the effect of different doses of Z. coccineum extract on restoring chondrocytes and muscles structures. Osteoclast size and apoptotic rate examinations revealed the protective effect of Z. coccineum extract on osteoclast. The results upon induction of animals and upon treatment using of MTX significantly increased apoptotic rate of osteoclast compared to control, while using of 15.6 µg/ml. for Z. coccineum extract lead to recover regular apoptotic rate demonstrating the protective effect of the extract. Z. coccineum extract regulated the secretion of proinflammatory and anti-inflammatory cytokines. Biochemical tests indicated the safety of Z. coccineum extract on kidney and liver functions. Conclusion. Z. coccineum extract has efficient and safe anti-inflammatory potential in an induced rat model.


Assuntos
Artrite Experimental , Artrite , Zygophyllum , Animais , Anti-Inflamatórios/química , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Citocinas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Extratos Vegetais/química , Ratos , Ratos Wistar , Zygophyllum/química
9.
Recent Adv Antiinfect Drug Discov ; 17(2): 139-153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692160

RESUMO

BACKGROUND: Biomphalaria alexandrina snails, as transitional hosts of schistosomiasis, plays an essential part in the spread of the illness. Control of these snails by the substance molluscicides antagonistically influences the oceanic climate, causing poisonous and cancer-causing consequences for non-target life forms. OBJECTIVE: Looking for new naturally safe substances that can treat schistosomiasis disease with minimal side effects on the environment and plants, fish wealth and do not affect vital human functions. METHODS: Fifty fungal species were used to evaluate their activity against Biomphalaria alexandrina. Study the effect of the fungal extract on vital functions of Biomphalaria alexandrina and fish wealth. Purification of active substances and identification of their chemical structures. RESULTS: Cladosporium nigrellum and Penicillium aurantiogresium metabolites were effective against B. alexandrina snails, and the effects of promising fungal extracts sublethal concentrations (IC10 & IC25) on the levels of steroid sex hormones, liver enzymes, total protein, lipids, albumin and glucose were determined. Chemical analyses of this filtrate separated a compound effective against snails; it was identified. Protein electrophoresis showed that fungal filtrate affects the protein pattern of snails' haemolymph. Little or no mortality of Daphnia pulex individuals was observed after their exposure to sublethal concentrations of each treatment. CONCLUSION: Certain compounds from fungal cultures could be safely used for biological control of Biomphalaria alexandrina snails.


Assuntos
Biomphalaria , Moluscocidas , Esquistossomose , Animais , Humanos , Moluscocidas/farmacologia , Esquistossomose/tratamento farmacológico , Hemolinfa , Água Doce
10.
Mitochondrial DNA B Resour ; 7(6): 901-904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692641

RESUMO

White yak is a unique and precious economic livestock animal in the world. In this study, the mitogenome of Huzhu white yak was firstly sequenced using Illumina high-throughput sequencing technique and then the assembly was annotated. We also explored mitogenome characterization and phylogeny of Huzhu white yak. Our results showed that the mitogenome of Huzhu white yak is a circular molecule with 16,323bp length including a non-coding control region (D-loop), two ribosomal RNA genes (12S rRNA and 16S rRNA), 22 transfer RNA genes and 13 protein-coding genes. The contents of four nucleotides (A, G, C and T) were 33.71%, 13.21%, 25.80%, and 27.28%, respectively, yielding a lower GC content (39.01%) than AT (60.99%). Phylogenetic analysis suggested that Huzhu white yak possessed the closest relationships with Huanhu, Jiulong, Datong, Jinchuan, Sibu, Ashdan and Pali yak breeds, and closer to wild yak and Bazhou breed.

11.
Biomed Res Int ; 2022: 9246785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111849

RESUMO

OBJECTIVE: The present study was aimed at investigating the possible antiulcer activities of some natural phytochemicals Aloe perryi leaf extract (APLE) and flower extract (APFE) in addition to the date palm seed extract (DPSE) and the oily samples of DPSE in a pylorus ligation-induced ulcer model using ranitidine as a standard antiulcer drug. BACKGROUND: Peptic ulcer is a prevalent gastrointestinal disorder due to hypersecretion of gastric acid. It affects four million people worldwide, and 2-10% of these ulcers are perforated and cause bleeding. This increases the risk of morbidity and mortality. So we aimed to introduce a primary study alternatively safe method for treating peptic ulcer. MATERIALS AND METHODS: Forty-two Wistar Albino rats of either sex were randomly divided into seven groups (6/each). The pylorus ligation was done to induce ulcer in pretreated albino rats. The antiulcer activities of extracts were estimated at different dose levels (250 and 500 mg/kg) using ranitidine as a standard drug (50 mg/kg). Gastric volume, pH, and total and free acidity as well as ulcer index and percentage of ulcer inhibition were measured to elucidate the antiulcerogenic effects. Histological examination of gastric ulcer was also performed. Statistical analysis for the results was done where P < 0.05 was considered statistically significant. RESULTS: Pylorus ligation for 6 h in control rats resulted in gastric ulcer which was indicated by the accumulation of gastric secretion and increased total acidity and decreased pH. The pretreatment of rats with APLE, APFE, and DPSE in addition to the oily samples of DPSE significantly inhibited the ulcers induced by pylorus ligation. These effects were attributed to significant reductions in total and free acidity, ulcer index, and gastric volume while there is a marked decrease in gastric pH (the antisecretory) as well as mucosal strengthening properties of these phytochemicals. CONCLUSION: These findings give these extracts the potential to be a promising tool for the management of gastric ulcer after performing further clinical and experimental studies. Our study demonstrated the promising antiulcer activity of extracts and oils in pyloric ligation-induced gastric ulcer. To the best of our knowledge, this is the first study to explore the antiulcer activity of these extracts; however, further investigations may be recommended for full details about this antiulcerogenic capacity.


Assuntos
Aloe , Phoeniceae , Fitoterapia/métodos , Extratos Vegetais/farmacologia , Úlcera Gástrica/tratamento farmacológico , Animais , Antiulcerosos/administração & dosagem , Antiulcerosos/farmacologia , Concentração de Íons de Hidrogênio , Extratos Vegetais/administração & dosagem , Ranitidina/administração & dosagem , Ranitidina/farmacologia , Ratos , Ratos Wistar
12.
Artigo em Inglês | MEDLINE | ID: mdl-35152871

RESUMO

BACKGROUND: Capparis spinosa grows in Asian and Mediterranean desert areas. Different parts of Capparis spinosa, including flowers, have been used in various folk medicine applications. OBJECTIVE: This study aims to evaluate the anti-arthritic potential of ethanolic extract of Egyptian Capparis spinosa flowers in a rat model of rheumatoid arthritis. Moreover, analysis of Capparis spinosa extract was performed using LC-qTOF-MS/MS. METHODS: Animals were split into six groups: negative control group, induced arthritic animals, arthritic rats receiving 7, 14 and 28 mg/kg of Capparis spinosa extract, respectively, in three groups to detect the optimum dose, and the induced group receiving a standard drug. The arthritic score was checked daily for 15 days after induction. After animals were sacrificed, their joints and muscles were subjected to microscopic and ultra-structure examinations. Ex vivo culturing of osteoclasts was performed. Cytokine levels were measured in all examined groups. RESULTS: The results revealed 7 mg/kg of Capparis spinosa extract as the optimal dose, which decreased inflammation signs through controlling chondrocytes, osteoclasts, and levels of inflammatory mediators. CONCLUSION: LC-Mass analysis revealed Capparis spinosa extract to contain a mixture of flavonol glycosides, flavan-3-ols and hydroxycinnamic acid derivatives, which may provide beneficial multifunction in regulating arthritic symptoms.


Assuntos
Artrite , Capparis , Extratos Vegetais , Animais , Artrite/tratamento farmacológico , Capparis/química , Cromatografia Líquida , Citocinas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Espectrometria de Massas em Tandem
13.
Mitochondrial DNA B Resour ; 6(9): 2498-2500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377805

RESUMO

Tongde County is located in the southeast of Qinghai Province, China, harboring rich yak genetic resources. In the present study, the complete mitochondrial genome (mitogenome) of the Tongde yak (Bos grunniens) was firstly sequenced using Illumina sequencing technique and the corresponding sequence characterization was identified. Our results showed that the mitogenome of Tongde yak is a circular molecule with 16,323 bp length consisting of 37 genes (13 protein-coding genes, 2 rRNA genes, 22 tRNA genes) and a non-coding control region (D-loop), which is consistent with most bovine species. The overall nucleotide composition was found as: A (33.72%), T (27.27%), C (25.80%), and G (13.21%), respectively, yielding a higher AT content (60.99%). The complete mitogenome sequence of Tongde yak would provide useful information for further studies on its genetic resource conservation and molecular breeding programmes in the future.

14.
ScientificWorldJournal ; 2020: 3591276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32665768

RESUMO

Gastric diseases are increasing with the infection of Campylobacter jejuni. Late stages of infection lead to peptic ulcer and gastric carcinoma. C. jejuni infects people within different stages of their life, especially childhood, causing severe diarrhea; it infects around two-thirds of the world population. Due to bacterial resistance against standard antibiotic, a new strategy is needed to impede Campylobacter infections. Plants provide highly varied structures with antimicrobial use which are unlikely to be synthesized in laboratories. A special feature of higher plants is their ability to produce a great number of organic chemicals of high structural diversity, the so-called secondary metabolites. Twenty plants were screened to detect their antibacterial activities. Screening results showed that Rheum officinalis was the most efficient against C. jejuni. Fractionation pattern was obtained by column chromatography, while the purity test was done by thin-layer chromatography (TLC). The chemical composition of bioactive compound was characterized using GC-MS, nuclear magnetic resonance, and infrared analysis. Minimal inhibitory concentration (MIC) of the purified compound was 31.25 µg/ml. Cytotoxicity assay on Vero cells was evaluated to be 497 µg/ml. Furthermore, the purified bioactive compound activated human lymphocytes in vitro. The data presented here show that Rheum officinalis could potentially be used in modern applications aimed at the treatment or prevention of foodborne diseases.


Assuntos
Antibacterianos/farmacologia , Campylobacter jejuni/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Rheum/química , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/ultraestrutura , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células Vero
15.
PLoS Pathog ; 16(2): e1008361, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32101593

RESUMO

Monocytes exist in two major populations, termed Ly6Chi and Ly6Clow monocytes. Compared to Ly6Chi monocytes, less is known about Ly6Clow monocyte recruitment and mechanisms involved in the recruitment of this subset. Furthermore, the role of Ly6Clow monocytes during infections is largely unknown. Here, using intravital microscopy, we demonstrate that Ly6Clow monocytes are predominantly recruited to the brain vasculature following intravenous infection with Cryptococcus neoformans, a fungal pathogen causing meningoencephalitis. The recruitment depends primarily on the interaction of VCAM1 expressed on the brain endothelium with VLA4 expressed on Ly6Clow monocytes. Furthermore, TNFR signaling is essential for the recruitment through enhancing VLA4 expression on Ly6Clow monocytes. Interestingly, the recruited Ly6Clow monocytes internalized C. neoformans and carried the organism while crawling on and adhering to the luminal wall of brain vasculature and migrating to the brain parenchyma. Our study reveals a substantial recruitment of Ly6Clow monocytes to the brain and highlights important properties of this subset during infection.


Assuntos
Criptococose/imunologia , Monócitos/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Encéfalo/imunologia , Criptococose/metabolismo , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Feminino , Integrina alfa4beta1/metabolismo , Masculino , Meningoencefalite/metabolismo , Meningoencefalite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Micoses/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais
16.
Proc Natl Acad Sci U S A ; 116(48): 24214-24220, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31723045

RESUMO

Although CRIg was originally identified as a macrophage receptor for binding complement C3b/iC3b in vitro, recent studies reveal that CRIg functions as a pattern recognition receptor in vivo for Kupffer cells (KCs) to directly bind bacterial pathogens in a complement-independent manner. This raises the critical question of whether CRIg captures circulating pathogens through interactions with complement in vivo under flow conditions. Furthermore, the role of CRIg during parasitic infection is unknown. Taking advantage of intravital microscopy and using African trypanosomes as a model, we studied the role of CRIg in intravascular clearance of bloodborne parasites. Complement C3 is required for intravascular clearance of African trypanosomes by KCs, preventing the early mortality of infected mice. Moreover, antibodies are essential for complement-mediated capture of circulating parasites by KCs. Interestingly, reduced antibody production was observed in the absence of complement C3 during infection. We further demonstrate that CRIg but not CR3 is critically involved in KC-mediated capture of circulating parasites, accounting for parasitemia control and host survival. Of note, CRIg cannot directly catch circulating parasites and antibody-induced complement activation is indispensable for CRIg-mediated parasite capture. Thus, we provide evidence that CRIg, by interacting with complement in vivo, plays an essential role in intravascular clearance of bloodborne parasites. Targeting CRIg may be considered as a therapeutic strategy.


Assuntos
Complemento C3b/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Parasitemia/parasitologia , Receptores de Complemento/fisiologia , Tripanossomíase Africana/sangue , Animais , Complemento C3b/imunologia , Microscopia Intravital , Células de Kupffer/imunologia , Células de Kupffer/parasitologia , Antígeno de Macrófago 1/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/patogenicidade , Trypanosoma congolense/patogenicidade , Tripanossomíase Africana/mortalidade , Tripanossomíase Africana/parasitologia
17.
Nat Commun ; 10(1): 4566, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594939

RESUMO

Fungal dissemination into the bloodstream is a critical step leading to invasive fungal infections. Here, using intravital imaging, we show that Kupffer cells (KCs) in the liver have a prominent function in the capture of circulating Cryptococcus neoformans and Candida albicans, thereby reducing fungal dissemination to target organs. Complement C3 but not C5, and complement receptor CRIg but not CR3, are involved in capture of C. neoformans. Internalization of C. neoformans by KCs is subsequently mediated by multiple receptors, including CR3, CRIg, and scavenger receptors, which work synergistically along with C5aR signaling. Following phagocytosis, the growth of C. neoformans is inhibited by KCs in an IFN-γ independent manner. Thus, the liver filters disseminating fungi from circulation via KCs, providing a mechanistic explanation for the enhanced risk of cryptococcosis among individuals with liver diseases, and suggesting a therapeutic strategy to prevent fungal dissemination through enhancing KC functions.


Assuntos
Infecções Fúngicas Invasivas/imunologia , Células de Kupffer/imunologia , Fígado/imunologia , Fagocitose , Animais , Candida albicans/imunologia , Candida albicans/isolamento & purificação , Candida albicans/patogenicidade , Complemento C3/genética , Complemento C3/imunologia , Complemento C3/metabolismo , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/isolamento & purificação , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Feminino , Humanos , Microscopia Intravital , Infecções Fúngicas Invasivas/sangue , Infecções Fúngicas Invasivas/microbiologia , Células de Kupffer/metabolismo , Células de Kupffer/microbiologia , Fígado/citologia , Fígado/diagnóstico por imagem , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Receptores de Complemento/genética , Receptores de Complemento/imunologia , Receptores de Complemento/metabolismo
19.
mBio ; 7(4)2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27406560

RESUMO

UNLABELLED: Anti-tumor necrosis factor alpha (anti-TNF-α) therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4(+) T cells in the lung-associated lymph nodes (LALN) of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC) in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance. IMPORTANCE: Increased susceptibility to invasive fungal infections in patients on anti-TNF-α therapies underlines the need for understanding the cellular effects of TNF-α signaling in promoting protective immunity to fungal pathogens. Here, we demonstrate that early TNF-α signaling is required for classical activation and accumulation of DC in LALN of C. neoformans-infected mice. Subsequent transcriptional initiation of Th17 followed by Th1 programming in LALN results in pulmonary accumulation of gamma interferon- and interleukin-17A-producing T cells and effective fungal clearance. All of these crucial steps are severely impaired in mice that undergo anti-TNF-α treatment, consistent with their inability to clear C. neoformans This study identified critical interactions between cells of the innate immune system (DC), the emerging T cell responses, and cytokine networks with a central role for TNF-α which orchestrate the development of the immune protection against cryptococcal infection. This information will be important in aiding development and understanding the potential side effects of immunotherapies.


Assuntos
Criptococose/imunologia , Criptococose/prevenção & controle , Células Dendríticas/imunologia , Pneumopatias/imunologia , Pneumopatias/prevenção & controle , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Carga Bacteriana , Linfócitos T CD4-Positivos/imunologia , Cryptococcus neoformans/imunologia , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/microbiologia , Linfonodos/imunologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...