Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(29): 7867-7874, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502328

RESUMO

We report unprecedented photochemistry for the diamidocarbene 1. Described within are the double cyclopropanation of 1-bromonaphthalene, the double addition to pyridine, and remarkably, the insertion into the unactivated sp3 C-H bonds of cyclohexane, tetramethylsilane, and n-pentane to give compounds 2-6, respectively. All compounds have been fully characterized, and the solid state structure of 4 was obtained using single crystal electron diffraction.

2.
J Am Chem Soc ; 142(34): 14733-14742, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786788

RESUMO

The driving of rapid polymerizations with visible to near-infrared light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. The improvement of efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to far-red light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (<1 mW/cm2) and catalyst loadings (<50 µM), exemplified by reaction completion within 60 s of irradiation using green, red, and far-red light-emitting diodes. Halogenated BODIPY photoredox catalysts were additionally employed to produce complex 3D structures using high-resolution visible light 3D printing, demonstrating the broad utility of these catalysts in additive manufacturing.

3.
J Chem Theory Comput ; 14(9): 4791-4805, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30063831

RESUMO

An efficient implementation of the perturb-then-diagonalize nonorthogonal configuration interaction method with second-order Møller-Plesset perturbation theory (NOCI-MP2) is presented. Relative to other low scaling multireference perturbation theories, NOCI-MP2 often requires a much smaller active space because of the use of nonorthogonal reference configurations. Reworking the NOCI-MP2 equations with the resolution of the identity (RI) approximation enables the method to have the same memory requirements and computational scaling as single reference RI-MP2. The working equations are extended to include single substitutions as required when the reference determinants do not satisfy the Hartree-Fock equations. A detailed computational algorithm is presented along with timings to establish the performance of the implementation. NOCI-MP2 is applied to the binding energy and charge resonance energy in dication and monocation π dimers, as well as didiamantane ethane, and hexaphenylethane. A well-defined set of nonorthogonal determinants are obtained using absolutely localized molecular orbitals (ALMOs), as solutions to the self-consistent field for molecular interactions (SCF-MI) equations corresponding to covalent and ionic determinants. Agreement with experimental information where available, and other multireference methods, is satisfactory, with the use of an 0.3 au level shift to guard against large MP2 amplitudes. For didiamantane ethane and hexaphenylethane, large dispersion forces help stabilize the molecules despite the steric repulsion. By contrast, in the case of hexaphenylethane, the energy penalty from the geometric distortion of the fragments significantly weakens the bond.

4.
Nat Chem ; 9(12): 1205-1212, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29168494

RESUMO

Singlet exciton fission (SF), the conversion of one spin-singlet exciton (S1) into two spin-triplet excitons (T1), could provide a means to overcome the Shockley-Queisser limit in photovoltaics. SF as measured by the decay of S1 has been shown to occur efficiently and independently of temperature, even when the energy of S1 is as much as 200 meV less than that of 2T1. Here we study films of triisopropylsilyltetracene using transient optical spectroscopy and show that the triplet pair state (TT), which has been proposed to mediate singlet fission, forms on ultrafast timescales (in 300 fs) and that its formation is mediated by the strong coupling of electronic and vibrational degrees of freedom. This is followed by a slower loss of singlet character as the excitation evolves to become only TT. We observe the TT to be thermally dissociated on 10-100 ns timescales to form free triplets. This provides a model for 'temperature-independent' efficient TT formation and thermally activated TT separation.

5.
J Chem Phys ; 145(5): 054105, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27497537

RESUMO

In this paper we introduce two size consistent forms of the non-orthogonal configuration interaction with second-order Møller-Plesset perturbation theory method, NOCI-MP2. We show that the original NOCI-MP2 formulation [S. R. Yost, T. Kowalczyk, and T. VanVoorh, J. Chem. Phys. 193, 174104 (2013)], which is a perturb-then-diagonalize multi-reference method, is not size consistent. We also show that this causes significant errors in large systems like the linear acenes. By contrast, the size consistent versions of the method give satisfactory results for singlet and triplet excited states when compared to other multi-reference methods that include dynamic correlation. For NOCI-MP2 however, the number of required determinants to yield similar levels of accuracy is significantly smaller. These results show the promise of the NOCI-MP2 method, though work still needs to be done in creating a more consistent black-box approach to computing the determinants that comprise the many-electron NOCI basis.

6.
J Am Chem Soc ; 138(31): 9730-42, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27387657

RESUMO

The traditional structure-function paradigm has provided significant insights for well-folded proteins in which structures can be easily and rapidly revealed by X-ray crystallography beamlines. However, approximately one-third of the human proteome is comprised of intrinsically disordered proteins and regions (IDPs/IDRs) that do not adopt a dominant well-folded structure, and therefore remain "unseen" by traditional structural biology methods. This Perspective considers the challenges raised by the "Dark Proteome", in which determining the diverse conformational substates of IDPs in their free states, in encounter complexes of bound states, and in complexes retaining significant disorder requires an unprecedented level of integration of multiple and complementary solution-based experiments that are analyzed with state-of-the art molecular simulation, Bayesian probabilistic models, and high-throughput computation. We envision how these diverse experimental and computational tools can work together through formation of a "computational beamline" that will allow key functional features to be identified in IDP structural ensembles.


Assuntos
Biologia Computacional , Proteínas Intrinsicamente Desordenadas/química , Proteoma , Teorema de Bayes , Cromatografia em Gel , Cristalografia por Raios X , Genoma Humano , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Probabilidade , Conformação Proteica , Dobramento de Proteína , Proteômica/métodos , Software
7.
Nat Chem ; 6(6): 492-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24848234

RESUMO

Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications.


Assuntos
Elétrons , Hidrocarbonetos Policíclicos Aromáticos/química , Teoria Quântica , Cinética , Medições Luminescentes , Estrutura Molecular
8.
Top Curr Chem ; 352: 103-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24838114

RESUMO

In organic photovoltaic (OPV) devices the formation of free charges from a singlet excited state is the key step in converting light to electrical energy. However, questions still remain as to why the process is so fast and efficient in some OPV devices while not in others. Currently, it is not understood how the binding energy of the charge transfer state formed at an organic/organic interface, ~40 kT, is overcome in order to create free charge carriers. Given the difficulty of experimentally probing the electronic processes occurring at the organic/organic interface, it falls to theoretical and computational studies to provide essential insights into the processes occurring on the microscopic level. In this review we will cover the contributions made by theoretical studies to improve our understanding of the organic/organic interface. We will address the advantages and disadvantages of different theoretical approaches to studying the numerous interesting effects observed, such as shifts in the HOMO and LUMO levels due to the electrostatic environment, increased localization due to disorder, and the general impact of molecular orientation on different molecular properties. Further, we will discuss the currently proposed mechanisms of charge separation at the organic/organic interface and the implications that these mechanisms have on the choice of materials for use in OPV devices.

10.
J Chem Phys ; 139(17): 174104, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24206284

RESUMO

In this article we propose the ΔSCF(2) framework, a multireference strategy based on second-order perturbation theory, for ground and excited electronic states. Unlike the complete active space family of methods, ΔSCF(2) employs a set of self-consistent Hartree-Fock determinants, also known as ΔSCF states. Each ΔSCF electronic state is modified by a first-order correction from Mo̸ller-Plesset perturbation theory and used to construct a Hamiltonian in a configuration interactions like framework. We present formulas for the resulting matrix elements between nonorthogonal states that scale as N(occ)(2)N(virt)(3). Unlike most active space methods, ΔSCF(2) treats the ground and excited state determinants even-handedly. We apply ΔSCF(2) to the H2, hydrogen fluoride, and H4 systems and show that the method provides accurate descriptions of ground- and excited-state potential energy surfaces with no single active space containing more than 10 ΔSCF states.

11.
Science ; 340(6130): 334-7, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23599489

RESUMO

Singlet exciton fission transforms a molecular singlet excited state into two triplet states, each with half the energy of the original singlet. In solar cells, it could potentially double the photocurrent from high-energy photons. We demonstrate organic solar cells that exploit singlet exciton fission in pentacene to generate more than one electron per incident photon in a portion of the visible spectrum. Using a fullerene acceptor, a poly(3-hexylthiophene) exciton confinement layer, and a conventional optical trapping scheme, we show a peak external quantum efficiency of (109 ± 1)% at wavelength λ = 670 nanometers for a 15-nanometer-thick pentacene film. The corresponding internal quantum efficiency is (160 ± 10)%. Analysis of the magnetic field effect on photocurrent suggests that the triplet yield approaches 200% for pentacene films thicker than 5 nanometers.

12.
Acc Chem Res ; 46(6): 1300-11, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23611026

RESUMO

Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses long- and short-wavelength donors and an acceptor and a simpler, two-layer combination of a singlet-fission donor and a long-wavelength acceptor. An example of the trilayer structure is singlet fission in tetracene with copper phthalocyanine inserted at the C60 interface. The bilayer approach includes pentacene photovoltaic cells with an acceptor of infrared-absorbing lead sulfide or lead selenide nanocrystals. Lead selenide nanocrystals appear to be the most promising acceptors, exhibiting efficient triplet exciton dissociation and high power conversion efficiency. Finally, we review architectures that use singlet fission materials to sensitize other absorbers, thereby effectively converting conventional donor materials to singlet fission dyes. In these devices, photoexcitation occurs in a particular molecule and then energy is transferred to a singlet fission dye where the fission occurs. For example, rubrene inserted between a donor and an acceptor decouples the ability to perform singlet fission from other major photovoltaic properties such as light absorption.

13.
J Phys Chem Lett ; 4(3): 453-8, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26281740

RESUMO

We investigate and assign a previously reported unexpected transition in the metal-organic framework Zn2(NDC)2(DPNI) (1; NDC = 2,6-naphthalenedicarboxylate, DPNI = dipyridyl-naphthalenediimide) that displays linear arrangements of naphthalenediimide ligands. Given the longitudinal transition dipole moment of the DPNI ligands, J-coupling seemed possible. Photophysical measurements revealed a broad, new transition in 1 between 400 and 500 nm. Comparison of the MOF absorption spectra with that of a charge transfer (CT) complex formed by manual grinding of DPNI and H2NDC led to the assignment of the new band in 1 as arising from an interligand CT. Constrained density functional theory utilizing a custom long-range-corrected hybrid functional was employed to determine which ligands were involved in the CT transition. On the basis of relative oscillator strengths, the interligand CT was assigned as principally arising from π-stacked DPNI/NDC dimers rather than the alternative orthogonal pairs within the MOF.

14.
Adv Mater ; 24(46): 6169-74, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22968762

RESUMO

Triplet exciton dissociation in singlet exciton fission devices with three classes of acceptors are characterized: fullerenes, perylene diimides, and PbS and PbSe colloidal nanocrystals. Using photocurrent spectroscopy and a magnetic field probe it is found that colloidal PbSe nanocrystals are the most promising acceptors, capable of efficient triplet exciton dissociation and long wavelength absorption.


Assuntos
Energia Solar , Coloides/química , Fulerenos/química , Imidas/química , Chumbo/química , Campos Magnéticos , Nanopartículas Metálicas/química , Perileno/análogos & derivados , Perileno/química , Teoria Quântica , Compostos de Selênio/química , Semicondutores , Sulfetos/química
15.
J Chem Phys ; 134(5): 054128, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21303113

RESUMO

This paper assesses the accuracy of the ΔSCF method for computing low-lying HOMO→LUMO transitions in organic dye molecules. For a test set of vertical excitation energies of 16 chromophores, surprisingly similar accuracy is observed for time-dependent density functional theory and for ΔSCF density functional theory. In light of this performance, we reconsider the ad hoc ΔSCF prescription and demonstrate that it formally obtains the exact stationary density within the adiabatic approximation, partially justifying its use. The relative merits and future prospects of ΔSCF for simulating individual excited states are discussed.

16.
J Am Chem Soc ; 132(34): 11878-80, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20690623

RESUMO

We examine the significance of hot exciton dissociation in two archetypical polymer-fullerene blend solar cells. Rather than evolving through a bound charge transfer state, hot processes are proposed to convert excitons directly into free charges. But we find that the internal quantum yields of carrier photogeneration are similar for both excitons and direct excitation of charge transfer states. The internal quantum yield, together with the temperature dependence of the current-voltage characteristics, is consistent with negligible impact from hot exciton dissociation.


Assuntos
Fontes de Energia Elétrica , Fulerenos/química , Polímeros/química , Modelos Moleculares , Teoria Quântica , Temperatura
17.
Acc Chem Res ; 43(7): 995-1004, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20443554

RESUMO

Organic semiconductors (OSCs) have recently received significant attention for their potential use in photovoltaic, light emitting diode, and field effect transistor devices. Part of the appeal of OSCs is the disordered, amorphous nature of these materials, which makes them more flexible and easier to process than their inorganic counterparts. In addition to their technological applications, OSCs provide an attractive laboratory for examining the chemistry of heterogeneous systems. Because OSCs are both electrically and optically active, researchers have access to a wealth of electrical and spectroscopic probes that are sensitive to a variety of localized electronic states in these materials. In this Account, we review the basic concepts in first-principles modeling of the electronic properties of disordered OSCs. There are three theoretical ingredients in the computational recipe. First, Marcus theory of nonadiabatic electron transfer (ET) provides a direct link between energy and kinetics. Second, constrained density functional theory (CDFT) forms the basis for an ab initio model of the diabatic charge states required in ET. Finally, quantum mechanical/molecular mechanical (QM/MM) techniques allow us to incorporate the influence of the heterogeneous environment on the diabatic states. As an illustration, we apply these ideas to the small molecule OSC tris(8- hydroxyquinolinato)aluminum (Alq(3)). In films, Alq(3) can possess a large degree of short-range order, placing it in the middle of the order-disorder spectrum (in this spectrum, pure crystals represent one extreme and totally amorphous structures the opposite extreme). We show that the QM/MM recipe reproduces the transport gap, charge carrier hopping integrals, optical spectra, and reorganization energies of Alq(3) in quantitative agreement with available experiments. However, one cannot specify any of these quantities accurately with a single number. Instead, one must characterize each property by a distribution that reflects the influence of the heterogeneous environment on the electronic states involved. For example, the hopping integral between a given pair of Alq(3) molecules can vary by as much as a factor of 5 on the nanosecond timescale, but the integrals for two different pairs can easily differ by a factor of 100. To accurately predict mesoscopic properties such as carrier mobilities based on these calculations, researchers must account for the dynamic range of the microscopic inputs, rather than just their average values. Thus, we find that many of the computational tools required to characterize these materials are now available. As we continue to improve this computational toolbox, we envision a future scenario in which researchers can use basic information about OSC deposition to simulate device operation on the atomic scale. This type of simulation could allow researchers to obtain data that not only aids in the interpretation of experimental results but also guides the design of more efficient devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...