Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560143

RESUMO

Federated learning is a type of distributed machine learning in which models learn by using large-scale decentralized data between servers and devices. In a short-range wireless communication environment, it can be difficult to apply federated learning because the number of devices in one access point (AP) is small, which can be small enough to perform federated learning. Therefore, it means that the minimum number of devices required to perform federated learning cannot be matched by the devices included in one AP environment. To do this, we propose to obtain a uniform global model regardless of data distribution by considering the multi-AP coordination characteristics of IEEE 802.11be in a decentralized federated learning environment. The proposed method can solve the imbalance in data transmission due to the non-independent and identically distributed (non-IID) environment in a decentralized federated learning environment. In addition, we can also ensure the fairness of multi-APs and determine the update criteria for newly elected primary-APs by considering the learning training time of multi-APs and energy consumption of grouped devices performing federated learning. Thus, our proposed method can determine the primary-AP according to the number of devices participating in the federated learning in each AP during the initial federated learning to consider the communication efficiency. After the initial federated learning, fairness can be guaranteed by determining the primary-AP through the training time of each AP. As a result of performing decentralized federated learning using the MNIST and FMNIST dataset, the proposed method showed up to a 97.6% prediction accuracy. In other words, it can be seen that, even in a non-IID multi-AP environment, the update of the global model for federated learning is performed fairly.

2.
Sensors (Basel) ; 22(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36298310

RESUMO

With the growing interest in the Internet of Things (IoT), research on massive machine-type communication (mMTC) services is being actively promoted. Because mMTC services are required to serve a large number of devices simultaneously, a lack of resources during initial access can be a significant problem when providing mMTC services in cellular networks. Various studies on efficient preamble transmission have been conducted to solve the random access problem of mMTC services. However, supporting a large number of devices simultaneously with limited resources is a challenging problem. In this study, we investigate code-expanded random access (CeRA), which extends the limited preamble resources to the code domain to decrease the high collision rate. To solve the existing CeRA phantom codeword and physical uplink shared channel (PUSCH) resource shortage problems, we propose an optimal preamble codeword set selection algorithm based on mathematical analysis. The simulation results indicate that the proposed code-expanded random access scheme to enhance success probability (CeRA-eSP) achieves a higher random access success rate with a lower access delay compared to the existing random access schemes.


Assuntos
Internet das Coisas , Probabilidade , Algoritmos , Simulação por Computador , Pesquisa
3.
Sensors (Basel) ; 13(10): 13382-401, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24152920

RESUMO

Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase.


Assuntos
Algoritmos , Redes de Comunicação de Computadores/instrumentação , Multimídia , Tecnologia de Sensoriamento Remoto/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Tecnologia sem Fio/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Armazenamento e Recuperação da Informação/métodos , Telecomunicações/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA