Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Endod J ; 57(6): 759-768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436525

RESUMO

AIM: Among numerous constituents of Panax ginseng, a constituent named Ginsenoside Rb1 (G-Rb1) has been studied to diminish inflammation associated with diseases. This study investigated the anti-inflammatory properties of G-Rb1 on human dental pulp cells (hDPCs) exposed to lipopolysaccharide (LPS) and aimed to determine the underlying molecular mechanisms. METHODOLOGY: The KEGG pathway analysis was performed after RNA sequencing in G-Rb1- and LPS-treated hDPCs. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used for the assessment of cell adhesion molecules and inflammatory cytokines. Statistical analysis was performed with one-way ANOVA and the Student-Newman-Keuls test. RESULTS: G-Rb1 did not exhibit any cytotoxicity within the range of concentrations tested. However, it affected the levels of TNF-α, IL-6 and IL-8, as these showed reduced levels with exposure to LPS. Additionally, less mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were shown. With the presence of G-Rb1, decreased levels of PI3K/Akt, phosphorylated IκBα and p65 were also observed. Furthermore, phosphorylated ERK and JNK by LPS were diminished within 15, 30 and 60 min of G-Rb1 exposure; however, the expression of non-phosphorylated ERK and JNK remained unchanged. CONCLUSIONS: G-Rb1 suppressed the LPS-induced increase of cell adhesion molecules and inflammatory cytokines, while also inhibiting PI3K/Akt, phosphorylation of NF-κB transcription factors, ERK and JNK of MAPK signalling in hDPCs.


Assuntos
Polpa Dentária , Ginsenosídeos , Lipopolissacarídeos , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Ginsenosídeos/farmacologia , Humanos , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , NF-kappa B/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Células Cultivadas , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Citocinas/metabolismo , Western Blotting
2.
Artigo em Inglês | MEDLINE | ID: mdl-33610819

RESUMO

Endocrine disruptors (EDs) interfere with different hormonal and metabolic processes and disrupt the development of organs and tissues, as well as the reproductive system. In toxicology research, various animal models have been utilized to compare and characterize the effects of EDs. We reviewed studies assessing the effect of ED exposure in humans, zebrafish, and mouse models and the adverse effects of EDs on male and female reproductive systems. This review outlines the distinctive morphological characteristics, as well as gene expression, factors, and mechanisms that are known to occur in response to EDs. In each animal model, disturbances in the reproductive system were associated with certain factors of apoptosis, the hypothalamic-pituitary-gonadal axis, estrogen receptor pathway-induced meiotic disruption, and steroidogenesis. The effects of bisphenol A, phthalate, and 17α-ethinylestradiol have been investigated in animal models, each providing supporting outcomes and elaborating the key regulators of male and female reproductive systems.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Etinilestradiol/toxicidade , Genitália/efeitos dos fármacos , Fenóis/toxicidade , Ácidos Ftálicos/toxicidade , Animais , Feminino , Humanos , Masculino , Camundongos , Peixe-Zebra
3.
Artigo em Inglês | MEDLINE | ID: mdl-33529709

RESUMO

A dithiocarbamate (DTC) fungicide, propineb, affects thyroid function and exerts immunotoxicity, cytotoxicity, and neurotoxicity in humans. Long-term exposure to propineb is associated with carcinogenicity, teratogenicity, malfunction of the reproductive system, and abnormalities in vital signs during organ development. However, there is no evidence of acute toxicity attributable to propineb in zebrafish. Therefore, in the present study, we assessed the toxicity of propineb in zebrafish by studying its adverse effects on embryo development, angiogenesis, and notochord development. Embryos with propineb exposure developed morphological and physiological defects and in larvae, apoptosis and notochord defects were induced in the early development stage. Transgenic fli1:eGFP zebrafish exposed to propineb showed abnormal larval development with defects in angiogenesis and deformed vasculature. Propineb induced irreversible damage to the neural development of embryos and neurogenic defects in developing zebrafish in transgenic olig2:dsRED zebrafish. These results show that exposure to propineb triggers abnormalities in different organ systems of zebrafish and suggests the physiological complexity of the response to propineb.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Peixe-Zebra/embriologia , Zineb/análogos & derivados , Animais , Neovascularização Fisiológica/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Notocorda/efeitos dos fármacos , Zineb/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...