Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 28(26): 9996-10006, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22676402

RESUMO

In this paper, we have shown that Cu/TiO(2) catalysts are highly active in CO oxidation. For instance, a 3.4% Cu/TiO(2) catalyst exhibits a higher turnover rate for the effective removal of CO in air than 3-5% Pt/TiO(2) and 20% Cu/ZnO/Al(2)O(3) catalysts. A small amount of Cu(+) species is formed during the calcination treatment at 225 °C, which is the main active phase for the CO oxidation. However, it is proposed that some highly dispersed CuO can also form in the TiO(2) lattice during the calcination treatment. Furthermore, a strong electron interaction between Cu(2+) in highly dispersed CuO and Ti(3+) on rutile TiO(2) (Cu(2+)+Ti(3+)→Cu(+)+Ti(4+)) has been shown to occur. Overall, the reduction of Cu(+) is a major factor that contributes to the reaction rate of the CO oxidation.


Assuntos
Monóxido de Carbono/química , Cobre/química , Titânio/química , Catálise , Hidrogênio/química , Oxirredução , Análise Espectral , Temperatura
2.
J Phys Chem A ; 114(11): 3773-81, 2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19655780

RESUMO

Commercially available Ni/Al(2)O(3) samples containing various concentrations of potassium were used to achieve carbon deposition from CO(2) via catalytic hydrogenation. Experimental results show that K additives can induce the formation of carbon nanofibers or carbon deposition on Ni/Al(2)O(3) during the reverse water-gas shift reaction. This work proposes that the formation rate of carbon deposition depends closely on ensemble control, suggesting that the ensemble size necessary to form carbon may be approximately 0.5 potassium atoms. The results of CO(2) temperature-programmed desorption provide strong evidence that the new adsorption sites for CO(2) created on Ni-K/Al(2)O(3) closely depend upon the synthesis of carbon nanofibers. It is found that some potassium-related active phases obtained by calcination and reduction pretreatments can participate in the carbon deposition reaction. The formation pathway for carbon deposition suggests that the main source of carbon deposition is CO(2) and that the pathway is independent of the reaction products CO and CH(4) in the reverse water-gas shift reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA