Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Control Release ; 370: 583-599, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38729435

RESUMO

Stem cells are recognized as an important target and tool in regenerative engineering. In this study, we explored the feasibility of engineering amniotic fluid-derived mesenchymal stem cell-secreted molecules (afMSC-SMs) as a versatile bioactive material for skin regenerative medicine applications in a time- and cost-efficient and straightforward manner. afMSC-SMs, obtained in powder form through ethanol precipitation, effectively contributed to preserving the self-renewal capacity and differentiation potential of primary human keratinocytes (pKCs) in a xeno-free environment, offering a potential alternative to traditional culture methods for their long-term in vitro expansion, and allowed them to reconstitute a fully stratified epithelium sheet on human dermal fibroblasts. Furthermore, we demonstrated the flexibility of afMSC-SMs in wound healing and hair regrowth through injectable hydrogel and nanogel-mediated transdermal delivery systems, respectively, expanding the pool of regenerative applications. This cell-free approach may offer several potential advantages, including streamlined manufacturing processes, scalability, controlled formulation, longer shelf lives, and mitigation of risks associated with living cell transplantation. Accordingly, afMSC-SMs could serve as a promising therapeutic toolbox for advancing cell-free regenerative medicine, simplifying their broad applicability in various clinical settings.

2.
J Tissue Eng ; 15: 20417314231226105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333057

RESUMO

Neuropathic pain (NP) is a debilitating condition stemming from damage to the somatosensory system frequently caused by nerve injuries or lesions. While existing treatments are widely employed, they often lead to side effects and lack specificity. This study aimed to alleviate NP by developing an innovative sustained-release thermosensitive hydrogel system. The system incorporates hyaluronic acid (HA)/Pluronic F127 injectable hydrogel and bupivacaine (Bup, B) in combination with poly(lactic-co-glycolic acid; PLGA)/modified magnesium hydroxide (MH)/luteolin (Lut; PML) microspheres (PML@B/Gel). The PML@B/Gel was designed for localized and prolonged co-delivery of Bup and Lut as an anesthetic and anti-inflammatory agent, respectively. Our studies demonstrated that PML@B/Gel had exceptional biocompatibility, anti-inflammatory, and antioxidant properties. In addition, it exhibited efficient pain relief in in vitro cellular assays. Moreover, this functional hydrogel showed substantial sustained drug release while diminishing microglial activation. Consequently, it effectively mitigated mechanical allodynia and thermal hyperalgesia in in vivo rat models of chronic constriction injury (CCI). Based on our research findings, PML@B/Gel emerges as a promising therapeutic approach for the protracted treatment of NP.

3.
Exp Mol Med ; 55(6): 1182-1192, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37258581

RESUMO

Spinal cord injury (SCI) is a clinical condition that leads to permanent and/or progressive disabilities of sensory, motor, and autonomic functions. Unfortunately, no medical standard of care for SCI exists to reverse the damage. Here, we assessed the effects of induced neural stem cells (iNSCs) directly converted from human urine cells (UCs) in SCI rat models. We successfully generated iNSCs from human UCs, commercial fibroblasts, and patient-derived fibroblasts. These iNSCs expressed various neural stem cell markers and differentiated into diverse neuronal and glial cell types. When transplanted into injured spinal cords, UC-derived iNSCs survived, engrafted, and expressed neuronal and glial markers. Large numbers of axons extended from grafts over long distances, leading to connections between host and graft neurons at 8 weeks post-transplantation with significant improvement of locomotor function. This study suggests that iNSCs have biomedical applications for disease modeling and constitute an alternative transplantation strategy as a personalized cell source for neural regeneration in several spinal cord diseases.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Células-Tronco Neurais/metabolismo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Neurônios/metabolismo , Axônios , Medula Espinal , Diferenciação Celular/fisiologia
4.
Reprod Sci ; 30(9): 2703-2714, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37067725

RESUMO

Endometriosis is an estrogen-dependent inflammatory disease characterized by the growth of endometrial-like tissues containing endometrial stromal cells and glandular epithelium outside the uterine cavity. An insufficient response to progesterone contributes to disease progression and systemic inflammation during the pathogenesis of endometriosis. Patients with endometriosis usually experience painful symptoms, dysmenorrhea, and infertility, which contribute to a significant reduction in their quality of life. To determine the possible molecular mechanisms of endometriosis and explore novel therapeutic targets, we derived primary human ovarian endometriotic stromal cells (hOESCs) from a patient of reproductive age with ovarian endometriosis. In this study, we successfully established immortalized human ovarian endometriotic stromal cell lines (ihOESCs) using primary stromal cells obtained from endometriotic lesions to overcome short lifespan and growth inhibition. Immortalization of hOESCs with human telomerase reverse transcriptase (hTERT) transfection led to cells that maintained a proliferative state under passage culture conditions without mutagenesis during cellular senescence. The morphology and karyotype of ihOESCs were unchanged compared with those of hOESCs. Moreover, ihOESCs were continuously positive for vimentin and negative for E-cadherin expression. Following decidual stimuli and inflammatory responses, both hOESCs and ihOESCs sensitively express decidualization markers and proinflammatory cytokines. Collectively, we characterized ihOESCs to maintain their phenotypic and functional properties with a longer lifespan and normal physiological responses than those of hOESCs. These immortalized cells could aid in a detailed understanding of the pathological mechanisms of endometriosis.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/metabolismo , Qualidade de Vida , Endométrio/metabolismo , Linhagem Celular , Células Estromais/metabolismo
5.
Biochem Biophys Res Commun ; 629: 128-134, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116375

RESUMO

Chronic Kidney Disease (CKD) is increasingly recognized as a global public health issue. Diabetic nephropathy (DN), also known as diabetic kidney disease, is a leading cause of CKD. Regenerative medicine strategy employing nephron progenitor cells (NPCs) is worthy of consideration as an alternative to shortage of donor organs for kidney transplantation. In previous study, we successfully generated induced NPCs (iNPCs) from human urine-derived cells that resembled human embryonic stem cell-derived NPCs. Here, we aimed to investigate the therapeutic potential of iNPCs in DN animal model. The results revealed the therapeutic effect of iNPCs as follows: (1) diminished glomerular hypertrophy, (2) reduced tubulointerstitial fibrosis, (3) low blood urea nitrogen, serum creatinine and albuminuria value, (4) decreased inflammation/fibrosis, (5) enhanced renal regeneration and (6) confirmed safety. This study demonstrates that human iNPCs have a therapeutic potential as a cell source for transplantation in patients with kidney diseases.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal Crônica , Animais , Creatinina , Diabetes Mellitus/patologia , Nefropatias Diabéticas/tratamento farmacológico , Fibrose , Humanos , Rim/patologia , Camundongos , Néfrons , Insuficiência Renal Crônica/patologia , Células-Tronco
6.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806058

RESUMO

Mesenchymal stem cells (MSCs) have been adopted in various preclinical and clinical studies because of their multipotency and low immunogenicity. However, numerous obstacles relating to safety issues remain. Therefore, MSC-derived extracellular vesicles (EVs) have been recently employed. EVs are nano-sized endoplasmic reticulum particles generated and released in cells that have similar biological functions to their origin cells. EVs act as cargo for bioactive molecules such as proteins and genetic materials and facilitate tissue regeneration. EVs obtained from adipose-derived MSC (ADMSC) also have neuroprotective and neurogenesis effects. On the basis of the versatile effects of EVs, we aimed to enhance the neural differentiation ability of ADMSC-derived EVs by elucidating the neurogenic-differentiation process. ADMSC-derived EVs isolated from neurogenesis conditioned media (differentiated EVs, dEVs) increased neurogenic ability by altering innate microRNA expression and cytokine composition. Consequently, dEVs promoted neuronal differentiation of neural progenitor cells in vitro, suggesting that dEVs are a prospective candidate for EV-based neurological disorder regeneration therapy.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Diferenciação Celular , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Estudos Prospectivos
7.
Tissue Eng Regen Med ; 19(3): 643-658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325404

RESUMO

BACKGROUND: Immunoglobulin A (IgA) nephropathy (IgAN) is one of an important cause of progressive kidney disease and occurs when IgA settles in the kidney resulted in disrupts kidney's ability to filter waste and excess water. Hydrogels are promising material for medical applications owing to their excellent adaptability and filling ability. Herein, we proposed a hyaluronic acid/gelatin (CHO-HA/Gel-NH2) bioactive hydrogel as a cell carrier for therapeutic kidney regeneration in IgAN. METHODS: CHO-HA/Gel-NH2 hydrogel was fabricated by Schiff-base reaction without any additional crosslinking agents. The hydrogel concentrations and ratios were evaluated to enhance adequate mechanical properties and biocompatibility for further in vivo study. High serum IgA ddY mice kidneys were treated with human urine-derived renal progenitor cells encapsulated in the hydrogel to investigate the improvement of IgA nephropathy and kidney regeneration. RESULTS: The stiffness of the hydrogel was significantly enhanced and could be modulated by altering the concentrations and ratios of hydrogel. CHO-HA/Gel-NH2 at a ratio of 3/7 provided a promising milieu for cells viability and cells proliferation. From week four onwards, there was a significant reduction in blood urea nitrogen and serum creatinine level in Cell/Gel group, as well as well-organized glomeruli and tubules. Moreover, the expression of pro-inflammatory and pro-fibrotic molecules significantly decreased in the Gel/Cell group, whereas anti-inflammatory gene expression was elevated compared to the Cell group. CONCLUSION: Based on in vivo studies, the renal regenerative ability of the progenitor cells could be further increased by this hydrogel system.


Assuntos
Glomerulonefrite por IGA , Hidrogéis , Animais , Gelatina , Glomerulonefrite por IGA/tratamento farmacológico , Ácido Hialurônico , Imunoglobulina A , Rim , Camundongos , Regeneração
8.
NPJ Regen Med ; 7(1): 4, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027563

RESUMO

The generation of human oligodendrocyte progenitor cells (OPCs) may be therapeutically valuable for human demyelinating diseases such as multiple sclerosis. Here, we report the direct reprogramming of human somatic cells into expandable induced OPCs (iOPCs) using a combination of OCT4 and a small molecule cocktail. This method enables generation of A2B5+ (an early marker for OPCs) iOPCs within 2 weeks retaining the ability to differentiate into MBP-positive mature oligodendrocytes. RNA-seq analysis revealed that the transcriptome of O4+ iOPCs was similar to that of O4+ OPCs and ChIP-seq analysis revealed that putative OCT4-binding regions were detected in the regulatory elements of CNS development-related genes. Notably, engrafted iOPCs remyelinated the brains of adult shiverer mice and experimental autoimmune encephalomyelitis mice with MOG-induced 14 weeks after transplantation. In conclusion, our study may contribute to the development of therapeutic approaches for neurological disorders, as well as facilitate the understanding of the molecular mechanisms underlying glial development.

9.
Stem Cell Res ; 59: 102664, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35042083

RESUMO

X-linked adrenoleukodystrophy (ALD) caused by the ABCD1 mutation, is the most common inherited peroxisomal disease. Previously, we generated an ALD patient-derived SCHi001-A iPSC model. In this study, we have performed the first genome editing of ALD patient-derived SCHi001-A iPSCs using homology-directed repair (HDR). The mutation site, c.1534G > A [GenBank: NM_000033.4], was corrected by introducing ssODN and the CRISPR/Cas9 system. The cell line exhibited normal iPSC plulipotency marker expression following genome editing. Mutation-corrected iPSCs from SCHi001-A iPSC line can be used in research into the pathophysiology of and therapeutics for ALD.

10.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948246

RESUMO

BACKGROUND: Regenerative medicine strategies employing nephron progenitor cells (NPCs) are a viable approach that is worthy of substantial consideration as a promising cell source for kidney diseases. However, the generation of induced nephron progenitor-like cells (iNPCs) from human somatic cells remains a major challenge. Here, we describe a novel method for generating NPCs from human urine-derived cells (UCs) that can undergo long-term expansion in a serum-free condition. RESULTS: Here, we generated iNPCs from human urine-derived cells by forced expression of the transcription factors OCT4, SOX2, KLF4, c-MYC, and SLUG, followed by exposure to a cocktail of defined small molecules. These iNPCs resembled human embryonic stem cell-derived NPCs in terms of their morphology, biological characteristics, differentiation potential, and global gene expression and underwent a long-term expansion in serum-free conditions. CONCLUSION: This study demonstrates that human iNPCs can be readily generated and expanded, which will facilitate their broad applicability in a rapid, efficient, and patient-specific manner, particularly holding the potential as a transplantable cell source for patients with kidney disease.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Néfrons/metabolismo , Diferenciação Celular/genética , Reprogramação Celular/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Néfrons/crescimento & desenvolvimento , Néfrons/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Urina/citologia
11.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439103

RESUMO

Recent advances in immunotherapies and molecularly targeted therapies have led to an increased interest in exploring the field of in vitro tumor mimetic platforms. An increasing need to understand the mechanisms of anti-cancer therapies has led to the development of natural tumor tissue-like in vitro platforms capable of simulating the tumor microenvironment. The incorporation of vascular structures into the in vitro platforms could be a crucial factor for functional investigation of most anti-cancer therapies, including immunotherapies, which are closely related to the circulatory system. Decellularized lung extracellular matrix (ldECM), comprised of ECM components and pro-angiogenic factors, can initiate vascularization and is ideal for mimicking the natural microenvironment. In this study, we used a ldECM-based hydrogel to develop a 3D vascularized lung cancer-on-a-chip (VLCC). We specifically encapsulated tri-cellular spheroids made from A549 cells, HUVECs, and human lung fibroblasts, for simulating solid type lung cancer. Additionally, two channels were incorporated in the hydrogel construct to mimic perfusable vessel structures that resemble arterioles or venules. Our study highlights how a more effective dose-dependent action of the anti-cancer drug Doxorubicin was observed using a VLCC over 2D screening. This observation confirmed the potential of the VLCC as a 3D in vitro drug screening tool.

12.
Stem Cell Res ; 54: 102392, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34091428

RESUMO

Leigh syndrome is a progressive neurodegenerative disease due to defects in the mitochondrial genes, including mitochondrial DNA cytochrome b (MTCYB) mutation, that typically begins in infancy or early childhood. Exercise intolerance and fatigue are common symptoms of mitochondrial disorders. Here, we generated induced pluripotent stem cell (iPSC) line from a 1-year-old patient with Leigh syndrome with MTCYB through temporal expression of exogenes, synthetic self-replicative mRNAs which were regulated by B18R protein. The established iPSCs showed expression of various pluripotency markers, a normal karyotype and differentiation potential to three germ layers in vitro while retaining MTCYB mutation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Leigh , Doenças Neurodegenerativas , Diferenciação Celular , Pré-Escolar , Citocromos b/genética , DNA Mitocondrial/genética , Humanos , Lactente , Doença de Leigh/genética , Mutação/genética , RNA Mensageiro/genética
13.
J Cell Physiol ; 236(11): 7625-7641, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33949692

RESUMO

The ability to generate astrocytes from human pluripotent stem cells (hPSCs) offers a promising cellular model to study the development and physiology of human astrocytes. The extant methods for generating functional astrocytes required long culture periods and there remained much ambiguity on whether such paradigms follow the innate developmental program. In this report, we provided an efficient and rapid method for generating physiologically functional astrocytes from hPSCs. Overexpressing the nuclear factor IB in hPSC-derived neural precursor cells induced a highly enriched astrocyte population in 2 weeks. RNA sequencing and functional analyses demonstrated progressive transcriptomic and physiological changes in the cells, resembling in vivo astrocyte development. Further analyses substantiated previous results and established the MAPK pathway necessary for astrocyte differentiation. Hence, this differentiation paradigm provides a prospective in vitro model for human astrogliogenesis studies and the pathophysiology of neurological diseases concerning astrocytes.


Assuntos
Astrócitos/metabolismo , Diferenciação Celular , Proliferação de Células , Fatores de Transcrição NFI/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fatores de Transcrição NFI/genética , Fenótipo , Transdução de Sinais , Transcriptoma
14.
Stem Cell Res ; 52: 102244, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33611043

RESUMO

ATP-binding cassette transporter subfamily D member 1 (ABCD1) gene is a member of ABC transporter super family, which conduct peroxisomal import of very long chain fatty acid and crucial underlying factor that induces X-linked adrenoleukodystrophy (X-ALD) when the gene is defected. Here, we report the generation of a human embryonic stem cell sub-line harboring a hemizygous ABCD1 mutation (C.1696_1710 del) using CRISPR/Cas9 system. Established line expresses pluripotency marker genes, can be differentiated to three germ layers, and maintains a normal karyotype.


Assuntos
Adrenoleucodistrofia , Células-Tronco Embrionárias Humanas , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia/genética , Sistemas CRISPR-Cas/genética , Humanos , Mutação/genética , Tecnologia
15.
J Hazard Mater ; 401: 122996, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763671

RESUMO

The use of pesticides can result in unintended side effects, such as environmental pollution and animal diseases; in serious cases, it may cause abortion. Flufenoxuron is an inhibitor of chitin synthesis that is used widely as a pesticide on farmland. It is difficult to break down and therefore accumulates in the body, and has also been detected in breast milk. Moreover, the effects of flufenoxuron in pregnancy remain elusive. Therefore, we investigated the effects of flufenoxuron on early pregnancy. Our results suggested that flufenoxuron inhibits cell development and cell cycle progression in porcine trophectoderm (pTr) cell and porcine endometrial luminal epithelial (pLE) cell lines through the repression of signal transduction pathways. Flufenoxuron induced programmed cell death through DNA fragmentation and apoptotic signals. In addition, flufenoxuron induced ROS production, ER stress, and mitochondrial malfunction; consequently, the cytosolic and mitochondrial calcium levels were increased. Expression of proteins on the ER-mitochondrial axis was increased by flufenoxuron. Cell migration was decreased by flufenoxuron treatment between pLE and pTr cells. In addition, the expression of pregnancy-related genes was decreased flufenoxuron. Collectively, our results indicated that flufenoxuron may be harmful to livestock and women in the early stages of pregnancy.


Assuntos
Apoptose , Mitocôndrias , Animais , Morte Celular , Proliferação de Células , Feminino , Compostos de Fenilureia , Gravidez , Suínos
16.
Pestic Biochem Physiol ; 171: 104731, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357553

RESUMO

As an organochloride pesticide, pyridaben (PDB) has been used on various plants, including fruiting plants and other crops. Because of emerging concerns regarding exposure to pesticides, the deleterious effects of PDB, including neuronal disease and reproductive abnormalities, have been determined. However, the intracellular mechanisms that contribute to the effects of PDB on the male reproductive system are still unknown. Therefore, we investigated the effects of PDB on the male reproductive organ, focusing on the testes using mouse testicular cells. We demonstrated that PDB suppressed cellular proliferation of mouse Leydig (TM3) and Sertoli (TM4) cells. Additionally, PDB disturbed calcium homeostasis via mitochondrial dysfunction and activation of endoplasmic reticulum stress. Furthermore, PDB inhibited transcriptional gene expression regarding the cell cycle, as well as steroidogenesis and spermatogenesis, which are the primary functions of TM3 and TM4 cells. Moreover, we verified via western blot analysis that PDB dysregulated the intracellular cell signaling pathways in mitochondrial-associated membranes and the Mapk/Pi3k pathway. Lastly, we confirmed that PDB efficiently suppressed the spheroid formation of TM3 and TM4 cells mimicking an in vivo environment. Collectively, the current results indicate that PDB induces testicular toxicity and male reproductive abnormalities by inducing mitochondrial dysfunction, endoplasmic reticulum stress and calcium imbalance.


Assuntos
Fosfatidilinositol 3-Quinases , Testículo , Animais , Masculino , Camundongos , Mitocôndrias , Piridazinas , Espermatogênese , Testículo/metabolismo
17.
Pestic Biochem Physiol ; 171: 104733, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357555

RESUMO

Recently, infertility has become a major global issue. It is crucial to identify environmental factors that lead to infertility. The prevalent use of pesticides in agriculture results in the exposure of livestock and humans to these pesticides. Studies have reported the harmful effects of pesticides on pregnancy. Pyridaben, a pesticide that inhibits mitochondrial complex 1, has been reported to have detrimental effects on neurons, spermatogenesis, hormonal balance, and embryonic development. However, the effect of pyridaben on the female reproductive system has not yet been studied. Therefore, in this study, we evaluated the effects of pyridaben on early pregnancy in porcine reproductive cell lines, which are known to mimic the female reproductive system. Results demonstrated that pyridaben decreased cell growth in porcine endometrial luminal epithelial and porcine trophectoderm cell lines through inhibition of cell signal transduction. Further, pyridaben increased subG1 phase and late apoptosis through the induction of reactive oxygen species production, mitochondrial dysfunction, calcium unbalances, pro-apoptotic signals, and endoplasmic reticulum (ER) stress. Moreover, we found that pyridaben induced autophagy and inhibition of placentation through the regulation of ER-mitochondria axis proteins. Overall, pyridaben was found to be harmful in early pregnancy in pigs and may have similar effects in human pregnancy.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Animais , Morte Celular , Proliferação de Células , Feminino , Gravidez , Piridazinas , Espécies Reativas de Oxigênio , Suínos
18.
Environ Pollut ; 266(Pt 3): 115174, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32683091

RESUMO

Bifenthrin (BF) is a synthetic insecticide that is widely used in fields, resulting in an increase in its exposure to animals. However, reports on the toxic effects of BF on mammalian species and the underlying mechanism are still lacking. Here, we elucidated the mechanism underlying the toxic effects of BF on mouse reproduction using cell lines of immature mouse Leydig (TM3) and Sertoli (TM4) cells, which are constituent cells of testes. Our results show that BF suppressed the proliferation and viability of TM3 and TM4 cells. Additionally, treatment with BF induced cell cycle arrest, apoptotic cell death, and DNA fragmentation. Mitochondrial dysfunction and disruption of calcium homeostasis were observed in BF-treated TM3 and TM4 cells. Further, bifenthrin modulated unfolded protein response and mitochondrion-associated membrane and mitogen-activated protein kinase (MAPK)/phosphoinositide 3-kinase (PI3K) signaling pathways. The expression of the mRNAs related to cell cycle progression, steroidogenesis, and spermatogenesis was downregulated by BF, suggestive of testicular toxicity. Taken together, these results demonstrate the intracellular mechanism of action of BF to involve antiproliferative and apoptotic effects and testicular dysfunction in mouse testis.


Assuntos
Células Intersticiais do Testículo , Células de Sertoli , Animais , Retículo Endoplasmático , Masculino , Camundongos , Mitocôndrias , Fosfatidilinositol 3-Quinases , Piretrinas , Testículo
19.
Stem Cells Transl Med ; 9(12): 1643-1650, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32716131

RESUMO

Glial cells are crucial for the development of the central nervous system and the maintenance of chemical homeostasis. The process of gliogenesis has been well studied in the rodent brain, but it remains less well studied in the human brain. In addition, rodent glial cells differ from human counterparts in terms of morphologies, functions, and anatomical locations. Cerebral organoids (also referred to as spheroids) derived from human pluripotent stem cells (hPSCs) have been developed and are suitable cell-based models for researching developmental and neurodegenerative diseases. The in vitro generation of glia, including astrocytes and oligodendrocytes, from such organoids represents a promising tool to model neuronal diseases. Here, we showed that three-dimensional (3D) culture of OLIG2- and NKX2.2-expressing neurospheres produced efficiently mature astrocytes and oligodendrocytes in terms of morphologies and expression pattern recapitulating native 3D environment. Our findings provide important insights for developmental research of the human brain and glial specification that may facilitate patient-specific disease modeling.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Esferoides Celulares/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteína Homeobox Nkx-2.2 , Humanos , Proteínas Nucleares , Fatores de Transcrição
20.
Obstet Gynecol Sci ; 63(5): 594-604, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32698560

RESUMO

OBJECTIVE: Exploiting their ability to differentiate into mesenchymal lineages like cartilage, bone, fat, and muscle, and to elicit paracrine effects, mesenchymal stem cells (MSCs) are widely used in clinical settings to treat tissue injuries and autoimmune disorders. One of accessible sources of MSC is the samples used for Papanicolaou (Pap) test, which is a cervical screening method for detecting potentially pre-cancerous and cancerous alterations in the cervical cells and to diagnose genetic abnormalities in fetuses. This study aimed to identify and isolate the stem cells from Pap smear samples collected from pregnant women, and to trace the origin of these cells to maternal or fetal tissue, and characterize their stem cell properties. METHODS: To investigate the possibility and efficiency of establishing MSC lines from the Pap smear samples, we were able to establish 6 cell lines from Pap smear samples from 60 pregnant women at different stages of gestation. RESULTS: The 3 cell lines randomly selected among the 6 established in this study, displayed high proliferation rates, several characteristics of MSCs, and the capacity to differentiate into adipocytes, osteocytes, and chondrocytes. Our study identified that the stem cell lines obtainable from Pap smear sampling were uterine cervical stromal cells (UCSCs) and had 10% efficiency of establishment. CONCLUSION: Despite their low efficiency of establishment, human UCSCs from Pap smear samples can become a simple, safe, low-cost, and donor-specific source of MSCs for stem cell therapy and regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...