Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612925

RESUMO

Ethylene (ET) is an important phytohormone that regulates plant growth, development and stress responses. The ethylene-insensitive3/ethylene-insensitive3-like (EIN3/EIL) transcription factor family, as a key regulator of the ET signal transduction pathway, plays an important role in regulating the expression of ET-responsive genes. Although studies of EIN3/EIL family members have been completed in many species, their role in doubled haploid (DH) poplar derived from another culture of diploid Populus simonii × P. nigra (donor tree, DT) remains ambiguous. In this study, a total of seven EIN3/EIL gene family members in the DH poplar genome were identified. Basic physical and chemical property analyses of these genes were performed, and these proteins were predicted to be localized to the nucleus. According to the phylogenetic relationship, EIN3/EIL genes were divided into two groups, and the genes in the same group had a similar gene structure and conserved motifs. The expression patterns of EIN3/EIL genes in the apical buds of different DH poplar plants were analyzed based on transcriptome data. At the same time, the expression patterns of PsnEIL1, PsnEIN3, PsnEIL4 and PsnEIL5 genes in different tissues of different DH plants were detected via RT-qPCR, including the apical buds, young leaves, functional leaves, xylem, cambium and roots. The findings presented above indicate notable variations in the expression levels of PsnEIL genes across various tissues of distinct DH plants. Finally, the PsnEIL1 gene was overexpressed in DT, and the transgenic plants showed a dwarf phenotype, indicating that the PsnEIL1 gene was involved in regulating the growth and development of poplar. In this study, the EIN3/EIL gene family of DH poplar was analyzed and functionally characterized, which provides a theoretical basis for the future exploration of the EIN3/EIL gene function.


Assuntos
Populus , Haploidia , Filogenia , Populus/genética , Etilenos
2.
Gene ; 908: 148287, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38360127

RESUMO

Aralia elata (Miq.) Seem, a significant tree species in the Araliaceae family, has medicinal and edible properties. Saponins are the primary active components of A. elata. The 3-hydroxy-3-methylglutaryl- CoA reductase (HMGR) is the initial rate-limiting enzyme of the major metabolic pathway of saponins in A. elata. In this study, the AeHMGR gene was identified through screening of transcriptome data. Through the qRT-PCR analysis, it was determined that the expression level of AeHMGR gene is highest in the somatic embryo and stem of A. elata. Heterologous transformation in tobacco revealed that ectopic expression of the AeHMGR gene leads to a significant reduction in the expression levels of the NtSS, NtFPS, and NtSE genes in transgenic tobacco lines, with a minimum expression level of 0.24 times that of the wild type. In the overexpressed callus lines of A. elata, the expression levels of the AeFPS, AeSE, AeSS, and Aeß-AS genes were also significantly lower compared to the wild type, with a minimum expression level of approximately 0.3 times that of the wild type. Interestingly, the overexpression of the AeHMGR gene in A. elata somatic embryos led to a substantial decrease in the expression levels of AeFPS and AeSS, while the expression levels of AeSE and Aeß-AS increased. Among the transgenic somatic embryo strain lines, line 7 exhibited the highest expression levels of AeSE and Aeß-AS, with fold increases of 11.51 and 9.38, respectively, compared with that of the wild-type. Additionally, a high-performance liquid chromatography method was established to detect five individual saponins in transgenic A. elata. The total saponin content in line 7 somatic embryos was 1.14 times higher than that of wild-type materials, but only 0.30 times that of wild-type cultivated leaves. Moreover, the content of oleanolic acid saponin in line 7 was 1.35 times higher than that of wild-type cultivated leaves. These indicate that HMGR can affect triterpene biosynthesis.


Assuntos
Aralia , Saponinas , Animais , Aralia/genética , Aralia/química , Folhas de Planta/química , Animais Geneticamente Modificados , Saponinas/genética , Cromatografia Líquida de Alta Pressão/métodos
3.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339223

RESUMO

Aralia elata (Miq.) Seem is a medicinal plant that shares a common pathway for the biosynthesis of triterpenoid saponins with Panax ginseng. Here, we transferred the dammarenediol-II synthase gene from P. ginseng (PgDDS; GenBank: AB122080.1) to A. elata. The growth of 2-year-old transgenic plants (L27; 9.63 cm) was significantly decreased compared with wild-type plants (WT; 74.97 cm), and the leaflet shapes and sizes of the transgenic plants differed from those of the WT plants. Based on a terpene metabolome analysis of leaf extracts from WT, L13, and L27 plants, a new structural skeleton for ursane-type triterpenoid saponins was identified. Six upregulated differentially accumulated metabolites (DAMs) were detected, and the average levels of Rg3 and Re in the leaves of the L27 plants were 42.64 and 386.81 µg/g, respectively, increased significantly compared with the WT plants (15.48 and 316.96 µg/g, respectively). Thus, the expression of PgDDS in A. elata improved its medicinal value.


Assuntos
Aralia , Plantas Medicinais , Saponinas , Triterpenos , Aralia/genética , Aralia/química , Saponinas/química , Triterpenos/química , Plantas Medicinais/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Folhas de Planta/metabolismo
4.
Genes (Basel) ; 14(6)2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37372312

RESUMO

Aralia elata is an important herb due to the abundance of pentacyclic triterpenoid saponins whose important precursors are squalene and OA. Here, we found that MeJA treatment promoted both precursors accumulation, especially the latter, in transgenic A. elata, overexpressing a squalene synthase gene from Panax notoginseng(PnSS). In this study, Rhizobium-mediated transformation was used to express the PnSS gene. Gene expression analysis and high-performance liquid chromatography (HPLC) were used to identify the effect of MeJA on squalene and OA accumulation. The PnSS gene was isolated and expressed in A. elata. Transgenic lines showed a very high expression of the PnSS gene and farnesyl diphosphate synthase gene (AeFPS) and a slightly higher squalene content than the wild-type, but endogenous squalene synthase (AeSS), squalene epoxidase (AeSE), and ß-amyrin synthase (Aeß-AS) gene were decreased as well as OA content. Following one day of MeJA treatment, the expression levels of PeSS, AeSS, and AeSE genes increased significantly. On day 3, the maximum content of both products reached 17.34 and 0.70 mg·g-1, which increased 1.39- and 4.90-fold than in the same lines without treatment. Transgenic lines expressing PnSS gene had a limited capability to promote squalene and OA accumulation. MeJA strongly activated their biosynthesis pathways, leading to enhance yield.


Assuntos
Aralia , Ácido Oleanólico , Esqualeno , Aralia/química , Farnesil-Difosfato Farnesiltransferase/genética
5.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499551

RESUMO

Juglans mandshurica has strong freezing resistance, surviving temperatures as low as -40 °C, making it an important freeze tolerant germplasm resource of the genus Juglans. APETALA2/ethylene responsive factor (AP2/ERF) is a plant-specific superfamily of transcription factors that regulates plant development, growth, and the response to biotic and abiotic stress. In this study, phylogenetic analysis was used to identify 184 AP2/ERF genes in the J. mandshurica genome, which were classified into five subfamilies (JmAP2, JmRAV, JmSoloist, JmDREB, and JmERF). A significant amount of discordance was observed in the 184 AP2/ERF genes distribution of J. mandshurica throughout its 16 chromosomes. Duplication was found in 14 tandem and 122 segmental gene pairs, which indicated that duplications may be the main reason for JmAP2/ERF family expansion. Gene structural analysis revealed that 64 JmAP2/ERF genes contained introns. Gene evolution analysis among Juglandaceae revealed that J. mandshurica is separated by 14.23 and 15 Mya from Juglans regia and Carya cathayensis, respectively. Based on promoter analysis in J. mandshurica, many cis-acting elements were discovered that are related to light, hormones, tissues, and stress response processes. Proteins that may contribute to cold resistance were selected for further analysis and were used to construct a cold regulatory network based on GO annotation and JmAP2/ERF protein interaction network analysis. Expression profiling using qRT-PCR showed that 14 JmAP2/ERF genes were involved in cold resistance, and that seven and five genes were significantly upregulated under cold stress in female flower buds and phloem tissues, respectively. This study provides new light on the role of the JmAP2/ERF gene in cold stress response, paving the way for further functional validation of JmAP2/ERF TFs and their application in the genetic improvement of Juglans and other tree species.


Assuntos
Resposta ao Choque Frio , Juglans , Resposta ao Choque Frio/genética , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Juglans/genética , Juglans/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Front Plant Sci ; 13: 822942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300010

RESUMO

Aralia elata is a perennial woody plant of the genus Aralia in the family Araliaceae. It is rich in saponins and therefore has a wide range of pharmacological effects. Here, we report a high-quality reference genome of A. elata, with a genome size of 1.21 Gb and a contig N50 of 51.34 Mb, produced by PacBio HiFi sequencing technology. This is the first genome assembly for the genus Aralia. Through genome evolutionary analysis, we explored the phylogeny and whole genome duplication (WGD) events in the A. elata genome. The results indicated that a recent WGD event occurred in the A. elata genome. Estimation of the divergence times indicated that the WGD may be shared by Araliaceae. By analyzing the genome sequence of A. elata and combining the transcriptome data from three tissues, we discovered important genes related to triterpene saponins biosynthesis. Furthermore, based on the embryonic callus induction system of A. elata established in our laboratory, we set up the genetic transformation system of this plant. The genomic resources and genetic transformation system obtained in this study provide insights into A. elata and lays the foundation for further exploration of the A. elata regulatory mechanism.

7.
Genes (Basel) ; 11(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575537

RESUMO

Combining phenotypic and genetic characteristics in a genetic variation study is of paramount importance to effectively orient the selection of producers' elite trees in a seed orchard. In total, 28 phenotypic characteristics and 16 microsatellite loci were used to analyze the clonal genetic variation, to characterize the genetic diversity, and to refine the genetic classifications of 110 Pinus koraiensis clones grown in the Naozhi orchard in northeastern China. All clones were significantly different in most traits. Most of the phenotypic characteristics showed great genetic variation among clones, while the genotypic differentiation was weak between the selection sites of clones. The SSR markers showed a relatively high level of genetic diversity (Na = 4.67 ± 0.43, Ne = 2.916 ± 0.18, I = 1.15 ± 0.07, Ho = 0.69 ± 0.04, He = 0.62 ± 0.02, and mean polymorphic information content (PIC) of 0.574), with higher heterozygosity as an indication of a lower probability of inbreeding events in the orchard. Despite weak correlation coefficients between dissimilarity matrices (r(A/B), range equal to 0.022, p-value < 0.001), the genetic and phenotypic classifications congruently subdivided all the clones into three major groups. The patterns of phenotypic trait variations and genetic diversity are valuable to effectively select materials in breeding programs of P. koraiensis.


Assuntos
Variação Biológica da População/genética , Variação Genética/genética , Repetições de Microssatélites/genética , Pinus/genética , China , Genótipo , Heterozigoto , Fenótipo , Sementes/genética
8.
Gene ; 578(1): 17-24, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26657036

RESUMO

Somatic embryogenesis (SE) has been studied as a model system to understand molecular events in physiology, biochemistry, and cytology during plant embryo development. In particular, it is exceedingly difficult to access the morphological and early regulatory events in zygotic embryos. To understand the molecular mechanisms regulating early SE in Eleutherococcus senticosus Maxim., we used high-throughput RNA-Seq technology to investigate its transcriptome. We obtained 58,327,688 reads, which were assembled into 75,803 unique unigenes. To better understand their functions, the unigenes were annotated using the Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases. Digital gene expression libraries revealed differences in gene expression profiles at different developmental stages (embryogenic callus, yellow embryogenic callus, global embryo). We obtained a sequencing depth of >5.6 million tags per sample and identified many differentially expressed genes at various stages of SE. The initiation of SE affected gene expression in many KEGG pathways, but predominantly that in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. This information on the changes in the multiple pathways related to SE induction in E. senticosus Maxim. embryogenic tissue will contribute to a more comprehensive understanding of the mechanisms involved in early SE. Additionally, the differentially expressed genes may act as molecular markers and could play very important roles in the early stage of SE. The results are a comprehensive molecular biology resource for investigating SE of E. senticosus Maxim.


Assuntos
Eleutherococcus/embriologia , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Eleutherococcus/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Técnicas de Embriogênese Somática de Plantas , Plantas Medicinais/embriologia , Plantas Medicinais/genética
9.
Int J Mol Sci ; 13(12): 16255-66, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23203194

RESUMO

The purpose of this study was to investigate the diversity of endophytic fungi of Aralia elata distributed in Northeast China as well as their capacity to produce saponins. Ninety-six strains of endophytic fungi were isolated, and polymerase chain reaction (PCR) and sequencing were employed to identify the isolates. The saponin concentrations of the culture filtrates of representative strains were measured. The agar diffusion method was used to test antimicrobial activity, while high-performance liquid chromatography (HPLC) was employed to identify the saponins produced by representative strains. Alternaria, Botryosphaeria, Camarosporium, Cryptosporiopsis, Diaporthe, Dictyochaeta, Penicillium, Fusarium, Nectria, Peniophora, Schizophyllum, Cladosporium and Trichoderma species were isolated in this study. Overall, 25% of the isolates belonged to Diaporthe (Diaporthe eres), and 12.5% belonged to Alternaria. The highest concentration of saponins was produced by G22 (2.049 mg/mL). According to the results of the phylogenetic analysis, G22 belonged to the genus Penicillium. The culture filtrate of G22 exhibited antibacterial activity against Staphylococcus aureus, and ginsenosides Re and Rb2 were detected in G22 culture filtrates by HPLC.


Assuntos
Aralia/microbiologia , Biodiversidade , Fungos/isolamento & purificação , Fungos/metabolismo , Saponinas/biossíntese , Antibacterianos/análise , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , China , Cromatografia Líquida de Alta Pressão , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Fungos/genética , Fusarium/enzimologia , Fusarium/genética , Fusarium/isolamento & purificação , Fusarium/metabolismo , Testes de Sensibilidade Microbiana , Filogenia , Saponinas/análise , Saponinas/farmacologia , Análise de Sequência de DNA , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
10.
Int J Mol Sci ; 13(11): 14115-26, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23203053

RESUMO

Dynamic changes in callose content, which is deposited as a plant defense response to physiological changes, were analyzed during somatic embryogenesis in Eleutherococcus senticosus zygotic embryos plasmolyzed in 1.0 M mannitol. During plasmolysis, callose deposition was clearly observed inside the plasma membrane of zygotic embryo epidermal cells using confocal laser scanning microscopy. The callose content of zygotic embryos gradually increased between 0 and 12 h plasmolysis and remained stable after 24 h plasmolysis. During eight weeks induction of somatic embryogenesis, the callose content of explants plasmolyzed for 12 h was slightly higher than explants plasmolyzed for 6 or 24 h, with the largest differences observed after 6 weeks culture, which coincided with the maximum callose content and highest number of globular somatic embryos. The highest frequency of somatic embryo formation was observed in explants plasmolyzed for 12 h. The somatic embryo induction rate and number of somatic embryos per explant were markedly different in zygotic embryos pretreated with plasmolysis alone (78.0%, 43 embryos per explant) and those pretreated with plasmolysis and the callose synthase inhibitor 2-deoxy-d-glucose (11.5%, 8 embryos per explant). This study indicates that callose production is required for somatic embryogenesis in plasmolyzed explants.


Assuntos
Eleutherococcus/genética , Eleutherococcus/metabolismo , Glucanos/metabolismo , Sementes/genética , Sementes/metabolismo , Eleutherococcus/embriologia , Epiderme Vegetal/metabolismo , Sementes/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...