Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Neuro Oncol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721826

RESUMO

BACKGROUND: The high fatality rate of glioblastoma (GBM) is attributed to glioblastoma stem cells (GSCs), which exhibit heterogeneity and therapeutic resistance. Metabolic plasticity of mitochondria is the hallmark of GSCs. Targeting mitochondrial biogenesis of GSCs is crucial for improving clinical prognosis in GBM patients. METHODS: SMYD2-induced PGC1α methylation and followed nuclear export is confirmed by co-immunoprecipitation, cellular fractionation, and immunofluorescence. The effects of SMYD2/PGC1α/CRM1 axis on GSCs mitochondrial biogenesis is validated by OCR, ECAR and intracranial glioma model. RESULTS: PGC1α methylation causes disabled mitochondrial function to maintain the stemness, thereby enhancing radio-resistance of GSCs. SMYD2 drives PGC1α K224 methylation (K224me), which is essential for promoting the stem-like characteristics of GSCs. PGC1α K224me is preferred binding with CRM1, accelerating PGC1α nuclear export and subsequent dysfunction. Targeting PGC1α methylation exhibits significant radiotherapeutic efficacy and prolongs patient survival. CONCLUSIONS: These findings unveil a novel regulatory pathway involving mitochondria that governs stemness in GSCs, thereby emphasizing promising therapeutic strategies targeting PGC1α and mitochondria for the treatment of GBM.

2.
Cell Death Differ ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594444

RESUMO

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.

3.
Acad Radiol ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458887

RESUMO

BACKGROUND: Gliomas are the most common primary brain tumours and constitute approximately half of all malignant glioblastomas. Unfortunately, patients diagnosed with malignant glioblastomas typically survive for less than a year. In light of this circumstance, genotyping is an effective means of categorising gliomas. The Ki67 proliferation index, a widely used marker of cellular proliferation in clinical contexts, has demonstrated potential for predicting tumour classification and prognosis. In particular, magnetic resonance imaging (MRI) plays a vital role in the diagnosis of brain tumours. Using MRI to extract glioma-related features and construct a machine learning model offers a viable avenue to classify and predict the level of Ki67 expression. METHODS: This study retrospectively collected MRI data and postoperative immunohistochemical results from 613 glioma patients from the First Affliated Hospital of Nanjing Medical University. Subsequently, we performed registration and skull stripping on the four MRI modalities: T1-weighted (T1), T2-weighted (T2), T1-weighted with contrast enhancement (T1CE), and Fluid Attenuated Inversion Recovery (FLAIR). Each modality's segmentation yielded three distinct tumour regions. Following segmentation, a comprehensive set of features encompassing texture, first-order, and shape attributes were extracted from these delineated regions. Feature selection was conducted using the least absolute shrinkage and selection operator (LASSO) algorithm with subsequent sorting to identify the most important features. These selected features were further analysed using correlation analysis to finalise the selection for machine learning model development. Eight models: logistic regression (LR), naive bayes, decision tree, gradient boosting tree, and support vector classification (SVM), random forest (RF), XGBoost, and LightGBM were used to objectively classify Ki67 expression. RESULTS: In total, 613 patients were enroled in the study, and 24,455 radiomic features were extracted from each patient's MRI. These features were eventually reduced to 36 after LASSO screening, RF importance ranking, and correlation analysis. Among all the tested machine learning models, LR and linear SVM exhibited superior performance. LR achieved the highest area under the curve score of 0.912 ± 0.036, while linear SVM obtained the top accuracy with a score of 0.884 ± 0.031. CONCLUSION: This study introduced a novel approach for classifying Ki67 expression levels using MRI, which has been proven to be highly effective. With the LR model at its core, our method demonstrated its potential in signalling a promising avenue for future research. This innovative approach of predicting Ki67 expression based on MRI features not only enhances our understanding of cell activity but also represents a significant leap forward in brain glioma research. This underscores the potential of integrating machine learning with medical imaging to aid in the diagnosis and prognosis of complex diseases.

4.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507470

RESUMO

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Ferro/metabolismo , Glioma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Enxofre/metabolismo , Enxofre/uso terapêutico , Fumaratos , Linhagem Celular Tumoral , PTEN Fosfo-Hidrolase/metabolismo
5.
CNS Neurosci Ther ; 30(2): e14577, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421107

RESUMO

BACKGROUND: Glucocorticoids (GCs) are steroidal hormones produced by the adrenal cortex. A physiological-level GCs have a crucial function in maintaining many cognitive processes, like cognition, memory, and mood, however, both insufficient and excessive GCs impair these functions. Although this phenomenon could be explained by the U-shape of GC effects, the underlying mechanisms are still not clear. Therefore, understanding the underlying mechanisms of GCs may provide insight into the treatments for cognitive and mood-related disorders. METHODS: Consecutive administration of corticosterone (CORT, 10 mg/kg, i.g.) proceeded for 28 days to mimic excessive GCs condition. Adrenalectomy (ADX) surgery was performed to ablate endogenous GCs in mice. Microinjection of 1 µL of Ad-mTERT-GFP virus into mouse hippocampus dentate gyrus (DG) and behavioral alterations in mice were observed 4 weeks later. RESULTS: Different concentrations of GCs were shown to affect the cell growth and development of neural stem cells (NSCs) in a U-shaped manner. The physiological level of GCs (0.01 µM) promoted NSC proliferation in vitro, while the stress level of GCs (10 µM) inhibited it. The glucocorticoid synthesis blocker metyrapone (100 mg/kg, i.p.) and ADX surgery both decreased the quantity and morphological development of doublecortin (DCX)-positive immature cells in the DG. The physiological level of GCs activated mineralocorticoid receptor and then promoted the production of telomerase reverse transcriptase (TERT); in contrast, the stress level of GCs activated glucocorticoid receptor and then reduced the expression of TERT. Overexpression of TERT by AD-mTERT-GFP reversed both chronic stresses- and ADX-induced deficiency of TERT and the proliferation and development of NSCs, chronic stresses-associated depressive symptoms, and ADX-associated learning and memory impairment. CONCLUSION: The bidirectional regulation of TERT by different GCs concentrations is a key mechanism mediating the U-shape of GC effects in modulation of hippocampal NSCs and associated brain function. Replenishment of TERT could be a common treatment strategy for GC dysfunction-associated diseases.


Assuntos
Glucocorticoides , Células-Tronco Neurais , Camundongos , Animais , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Corticosterona/farmacologia , Células-Tronco Neurais/metabolismo , Transtornos da Memória/metabolismo
6.
Cell Death Dis ; 15(1): 98, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286983

RESUMO

Extracellular matrix (ECM) remodeling has been implicated in the tumor malignant progression and immune escape in glioblastoma (GBM). Runt-related transcription factor 1 (RUNX1) is a vital transcriptional factor for promoting tumorigenesis and invasion in mesenchymal subtype of GBM. But the correlation between RUNX1 and ECM genes expression and regulatory mechanism of RUNX1 on ECM genes expression remain poorly understood to date. In this study, by using integral analysis of chromatin immunoprecipitation-sequencing and RNA sequencing, we reported that RUNX1 positively regulated the expression of various ECM-related genes, including Fibronectin 1 (FN1), Collagen type IV alpha 1 chain (COL4A1), and Lumican (LUM), in GBM. Mechanistically, we demonstrated that RUNX1 interacted with Nucleophosmin 1 (NPM1) to maintain the chromatin accessibility and facilitate FOS Like 2, AP-1 Transcription Factor Subunit (FOSL2)-mediated transcriptional activation of ECM-related genes, which was independent of RUNX1's transcriptional function. ECM remodeling driven by RUNX1 promoted immunosuppressive microenvironment in GBM. In conclusion, this study provides a novel mechanism of RUNX1 binding to NPM1 in driving the ECM remodeling and GBM progression.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ativação Transcricional , Histonas/metabolismo , Matriz Extracelular/metabolismo , Microambiente Tumoral/genética , Antígeno 2 Relacionado a Fos/genética
7.
Nat Commun ; 14(1): 5913, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737247

RESUMO

Temozolomide (TMZ) is a standard treatment for glioblastoma (GBM) patients. However, TMZ has moderate therapeutic effects due to chemoresistance of GBM cells through less clarified mechanisms. Here, we demonstrate that TMZ-derived 5-aminoimidazole-4-carboxamide (AICA) is converted to AICA ribosyl-5-phosphate (AICAR) in GBM cells. This conversion is catalyzed by hypoxanthine phosphoribosyl transferase 1 (HPRT1), which is highly expressed in human GBMs. As the bona fide activator of AMP-activated protein kinase (AMPK), TMZ-derived AICAR activates AMPK to phosphorylate threonine 52 (T52) of RRM1, the catalytic subunit of ribonucleotide reductase (RNR), leading to RNR activation and increased production of dNTPs to fuel the repairment of TMZ-induced-DNA damage. RRM1 T52A expression, genetic interruption of HPRT1-mediated AICAR production, or administration of 6-mercaptopurine (6-MP), a clinically approved inhibitor of HPRT1, blocks TMZ-induced AMPK activation and sensitizes brain tumor cells to TMZ treatment in mice. In addition, HPRT1 expression levels are positively correlated with poor prognosis in GBM patients who received TMZ treatment. These results uncover a critical bifunctional role of TMZ in GBM treatment that leads to chemoresistance. Our findings underscore the potential of combined administration of clinically available 6-MP to overcome TMZ chemoresistance and improve GBM treatment.


Assuntos
Glioblastoma , Hipoxantina Fosforribosiltransferase , Ribonucleotídeo Redutases , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Hipoxantinas , Mercaptopurina , Temozolomida/farmacologia , Hipoxantina Fosforribosiltransferase/genética
8.
Cancer Lett ; 573: 216380, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660885

RESUMO

Preoperative MRI is an essential diagnostic and therapeutic reference for gliomas. This study aims to evaluate the prognostic aspect of a radiomics biomarker for glioma and further investigate its relationship with tumor microenvironment and macrophage infiltration. We covered preoperative MRI of 664 glioma patients from three independent datasets: Jiangsu Province Hospital (JSPH, n = 338), The Cancer Genome Atlas dataset (TCGA, n = 252), and Repository of Molecular Brain Neoplasia Data (REMBRANDT, n = 74). Incorporating a multistep post-processing workflow, 20 radiomics features (Rads) were selected and a radiomics survival biomarker (RadSurv) was developed, proving highly efficient in risk stratification of gliomas (cut-off = 1.06), as well as lower-grade gliomas (cut-off = 0.64) and glioblastomas (cut-off = 1.80) through three fixed cut-off values. Through immune infiltration analysis, we found a positive correlation between RadSurv and macrophage infiltration (RMΦ = 0.297, p < 0.001; RM2Φ = 0.241, p < 0.001), further confirmed by immunohistochemical-staining (glioblastomas, n = 32) and single-cell sequencing (multifocal glioblastomas, n = 2). In conclusion, RadSurv acts as a strong prognostic biomarker for gliomas, exhibiting a non-negligible positive correlation with macrophage infiltration, especially with M2 macrophage, which strongly suggests the promise of radiomics-based models as a preoperative alternative to conventional genomics for predicting tumor macrophage infiltration and provides clinical guidance for immunotherapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Genômica , Macrófagos , Microambiente Tumoral
9.
Front Oncol ; 13: 1143688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711207

RESUMO

Objectives: In adult diffuse glioma, preoperative detection of isocitrate dehydrogenase (IDH) status helps clinicians develop surgical strategies and evaluate patient prognosis. Here, we aim to identify an optimal machine-learning model for prediction of IDH genotyping by combining deep-learning (DL) signatures and conventional radiomics (CR) features as model predictors. Methods: In this study, a total of 486 patients with adult diffuse gliomas were retrospectively collected from our medical center (n=268) and the public database (TCGA, n=218). All included patients were randomly divided into the training and validation sets by using nested 10-fold cross-validation. A total of 6,736 CR features were extracted from four MRI modalities in each patient, namely T1WI, T1CE, T2WI, and FLAIR. The LASSO algorithm was performed for CR feature selection. In each MRI modality, we applied a CNN+LSTM-based neural network to extract DL features and integrate these features into a DL signature after the fully connected layer with sigmoid activation. Eight classic machine-learning models were analyzed and compared in terms of their prediction performance and stability in IDH genotyping by combining the LASSO-selected CR features and integrated DL signatures as model predictors. In the validation sets, the prediction performance was evaluated by using accuracy and the area under the curve (AUC) of the receiver operating characteristics, while the model stability was analyzed by using the relative standard deviation of the AUC (RSDAUC). Subgroup analyses of DL signatures and CR features were also individually conducted to explore their independent prediction values. Results: Logistic regression (LR) achieved favorable prediction performance (AUC: 0.920 ± 0.043, accuracy: 0.843 ± 0.044), whereas support vector machine with the linear kernel (l-SVM) displayed low prediction performance (AUC: 0.812 ± 0.052, accuracy: 0.821 ± 0.050). With regard to stability, LR also showed high robustness against data perturbation (RSDAUC: 4.7%). Subgroup analyses showed that DL signatures outperformed CR features (DL, AUC: 0.915 ± 0.054, accuracy: 0.835 ± 0.061, RSDAUC: 5.9%; CR, AUC: 0.830 ± 0.066, accuracy: 0.771 ± 0.051, RSDAUC: 8.0%), while DL and DL+CR achieved similar prediction results. Conclusion: In IDH genotyping, LR is a promising machine-learning classification model. Compared with CR features, DL signatures exhibit markedly superior prediction values and discriminative capability.

10.
Front Oncol ; 13: 1222581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564933

RESUMO

Objectives: Is intradural fat graft packing indispensable in preventing postoperative cerebrospinal fluid leakage in endoscopic endonasal pituitary adenoma surgeries? This study aimed to review the methods and outcomes of our graded sellar floor reconstruction strategy without fat graft packing in endoscopic endonasal pituitary adenoma surgeries. Methods: From March 2018 to December 2022, 200 patients underwent endoscopic endonasal pituitary adenoma resection by a single author in our institute. We applied different graded skull base reconstruction strategies in different periods. Intradural fat graft packing was used to reconstruct the skull base in the early period, from March 2018 to June 2019, but fat graft was not used in the late period, from January 2020 to December 2022. The effect of these different graded skull base reconstruction strategies and whether intradural fat graft packing is necessary were evaluated by observing the incidence of postoperative cerebrospinal fluid leak. Results: In the early period, fat graft was used to reconstruct skull base when the intraoperative cerebrospinal fluid (CSF) leakage existed. There were two patients who suffered from postoperative cerebrospinal fluid leak in this group. In the late period, fat graft was not used to reconstruct the skull base, and no patient suffered from postoperative cerebrospinal fluid leakage in this group. Conclusions: Intradural fat graft packing is unnecessary in the endoscopic endonasal pituitary adenoma resection. The outcome of our graded sellar floor reconstruction strategy is satisfactory.

12.
FEBS Open Bio ; 13(9): 1789-1806, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489660

RESUMO

Glioblastoma is one of the most common malignant brain tumors. Vitamin D, primarily its hormonally active form calcitriol, has been reported to have anti-cancer activity. In the present study, we used patient-derived glioma cell lines to examine the effect of vitamin D3 and calcitriol on glioblastoma. Surprisingly, vitamin D3 showed a more significant inhibitory effect than calcitriol on cell viability and proliferation. Vitamin D receptor (VDR) mediates most of the cellular effects of vitamin D, and thus we examined the expression level and function of VDR via gene silencing and gene knockout experiments. We observed that VDR does not affect the sensitivity of patient-derived glioma cell lines to vitamin D3, and the gene encoding VDR is not essential for growth of patient-derived glioma cell lines. RNA sequencing data analysis and sterolomics analysis revealed that vitamin D3 inhibits cholesterol synthesis and cholesterol homeostasis by inhibiting the expression level of 7-dehydrocholesterol reductase, which leads to the accumulation of 7-dehydrocholesterol and other sterol intermediates. In conclusion, our results suggest that vitamin D3, rather than calcitriol, inhibits growth of patient-derived glioma cell lines via inhibition of the cholesterol homeostasis pathway.


Assuntos
Colecalciferol , Glioblastoma , Humanos , Colecalciferol/farmacologia , Calcitriol/farmacologia , Glioblastoma/tratamento farmacológico , Vitamina D/farmacologia , Linhagem Celular , Homeostase , Colesterol
13.
Cell Death Dis ; 14(7): 417, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438359

RESUMO

Long noncoding RNAs (lncRNAs) are involved in glioma initiation and progression. Glioma stem cells (GSCs) are essential for tumor initiation, maintenance, and therapeutic resistance. However, the biological functions and underlying mechanisms of lncRNAs in GSCs remain poorly understood. Here, we identified that LINC00839 was overexpressed in GSCs. A high level of LINC00839 was associated with GBM progression and radiation resistance. METTL3-mediated m6A modification on LINC00839 enhanced its expression in a YTHDF2-dependent manner. Mechanistically, LINC00839 functioned as a scaffold promoting c-Src-mediated phosphorylation of ß-catenin, thereby inducing Wnt/ß-catenin activation. Combinational use of celecoxib, an inhibitor of Wnt/ß-catenin signaling, greatly sensitized GSCs to radiation. Taken together, our results showed that LINC00839, modified by METTL3-mediated m6A, exerts tumor progression and radiation resistance by activating Wnt/ß-catenin signaling.


Assuntos
Glioma , RNA Longo não Codificante , Via de Sinalização Wnt , Humanos , beta Catenina/genética , Transformação Celular Neoplásica , Glioma/genética , Glioma/radioterapia , Metiltransferases/genética , Células-Tronco Neoplásicas , RNA Longo não Codificante/genética
14.
Clin Cancer Res ; 29(18): 3779-3792, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37439870

RESUMO

PURPOSE: The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state. EXPERIMENTAL DESIGN: We performed an integrative multi-omics analyses of RNA sequencing, GBM mRNA expression datasets, immune signatures, and epigenetic profiling to define the specific genes expressed in the mesenchymal GSC subsets. We then used patient-derived GSCs and a xenograft murine model to investigate the mechanisms of tumor-intrinsic and extrinsic factor to maintain the mesenchymal state of GSCs and induce TAM polarization. RESULTS: We identified that CXCL8 was preferentially expressed and secreted by mesenchymal GSCs and activated PI3K/AKT and NF-κB signaling to maintain GSC proliferation, survival, and self-renewal through a cell-intrinsic mechanism. CXCL8 induced signaling through a CXCR2-JAK2/STAT3 axis in TAMs, which supported an M2-like TAM phenotype through a paracrine, cell-extrinsic pathway. Genetic- and small molecule-based inhibition of these dual complementary signaling cascades in GSCs and TAMs suppressed GBM tumor growth and prolonged survival of orthotopic xenograft-bearing mice. CONCLUSIONS: CXCL8 plays critical roles in maintaining the mesenchymal state of GSCs and M2-like TAM polarization in GBM, highlighting an interplay between cell-autonomous and cell-extrinsic mechanisms. Targeting CXCL8 and its downstream effectors may effectively improve GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Macrófagos Associados a Tumor/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células , Microambiente Tumoral/genética
15.
Chin Neurosurg J ; 9(1): 16, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231522

RESUMO

BACKGROUND: Patients with insulo-Sylvian gliomas continue to present with severe morbidity in cognitive functions primarily due to neurosurgeons' lack of familiarity with non-traditional brain networks. We sought to identify the frequency of invasion and proximity of gliomas to portions of these networks. METHODS: We retrospectively analyzed data from 45 patients undergoing glioma surgery centered in the insular lobe. Tumors were categorized based on their proximity and invasiveness of non-traditional cognitive networks and traditionally eloquent structures. Diffusion tensor imaging tractography was completed by creating a personalized brain atlas using Quicktome to determine eloquent and non-eloquent networks in each patient. Additionally, we prospectively collected neuropsychological data on 7 patients to compare tumor-network involvement with change in cognition. Lastly, 2 prospective patients had their surgical plan influenced by network mapping determined by Quicktome. RESULTS: Forty-four of 45 patients demonstrated tumor involvement (< 1 cm proximity or invasion) with components of non-traditional brain networks involved in cognition such as the salience network (SN, 60%) and the central executive network (CEN, 56%). Of the seven prospective patients, all had tumors involved with the SN, CEN (5/7, 71%), and language network (5/7, 71%). The mean scores of MMSE and MOCA before surgery were 18.71 ± 6.94 and 17.29 ± 6.26, respectively. The two cases who received preoperative planning with Quicktome had a postoperative performance that was anticipated. CONCLUSIONS: Non-traditional brain networks involved in cognition are encountered during surgical resection of insulo-Sylvian gliomas. Quicktome can improve the understanding of the presence of these networks and allow for more informed surgical decisions based on patient functional goals.

16.
World Neurosurg ; 175: e841-e854, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37068608

RESUMO

OBJECTIVE: To investigate prognostic factors in patients with primary skull base chordoma (PSBC) to guide future therapeutic advances. METHODS: This retrospective cohort study of 94 PSBC patients was conducted in 2 institutions from January 2006 to December 2013. Independent predictors for progression-free survival (PFS) and overall survival were established with multivariate Cox regression analysis. RESULTS: Age (P = 0.006), extent of resection (P = 0.037), and radiotherapy (RT) (P = 0.027) were established as independent predictors for PFS in PSBC patients. Similarly, age (P = 0.002), extent of resection (P = 0.048), and RT (P = 0.015) were established as independent predictors for overall survival. Meta-analysis manifested that lower MIB-1 correlated with longer PFS in skull base chordoma patients (P < 0.001). RT doubled the 5-year PFS rate from 28.6 ± 12.1% to 61.6 ± 10.7% (P = 0.031) and increased the 5-year overall survival rate from 54.5 ± 13.8% to 84.2 ± 8.4% (P = 0.020) in the subtotal resection/partial resection and MIB-1 labeling index (STR/PR+MIB-1 LI) <2% subgroup. In contrast, in the STR/PR+MIB-1 LI ≥2% subgroup, the survival benefit of RT remained uncertain. Further analysis revealed no survival difference between different RT modalities in STR/PR PSBC patients. CONCLUSIONS: In PSBC patients, age, extent of resection, and adjuvant RT all are independent predictors for PFS. Lower MIB-1 LI is associated with longer PFS in PSBC patients. Adjuvant RT is necessary for PSBC patients who undergo STR/PR with MIB-1 LI <2%. Patients who undergo GTR or STR/PR with MIB-1 LI ≥2% seem nonresponsive to RT.


Assuntos
Cordoma , Neoplasias da Base do Crânio , Humanos , Estudos Retrospectivos , Cordoma/radioterapia , Cordoma/cirurgia , Intervalo Livre de Progressão , Radioterapia Adjuvante , Neoplasias da Base do Crânio/radioterapia , Neoplasias da Base do Crânio/cirurgia , Base do Crânio/patologia , Resultado do Tratamento
17.
J Mol Neurosci ; 73(4-5): 259-268, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37014544

RESUMO

Temozolomide (TMZ)-based chemotherapy plays a central part in glioma treatment. However, prominent resistance to TMZ is a major change by now. In this study, expression and prognosis of SRSF4 were analyzed using multiple public datasets. Therapeutic efficacy against TMZ resistance was determined by assessing colony formation, flow cytometry, and western blot assays. Bio-informational analysis, immunofluorescence (IF), and western blot assays were performed to evaluate double strand break repair. An orthotopic xenograft model was used to exam the functional role of SRSF4. Here, we found that SRSF4 expression was associated with histological grade, IDH1 status, 1p/19q codeletion, molecular subtype, tumor recurrence, and poor prognosis. SRSF4 promotes TMZ resistance through positively regulating MDC1, thereby accelerating double strand break repair. Targeting SRSF4 could significantly improve chemosensitivity. Taken together, our collective findings highlight an important role of SRSF4 in the regulation of TMZ resistance by modulation of double strand break repair.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/farmacologia , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Reparo do DNA , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
18.
J Am Chem Soc ; 145(10): 5930-5940, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867864

RESUMO

The crossing of blood-brain barrier (BBB) is essential for glioblastoma (GBM) therapy, and homotypic targeting is an effective strategy to achieve BBB crossing. In this work, GBM patient-derived tumor cell membrane (GBM-PDTCM) is prepared to cloak gold nanorods (AuNRs). Relying on the high homology of the GBM-PDTCM to the brain cell membrane, GBM-PDTCM@AuNRs realize efficient BBB crossing and selective GBM targeting. Meanwhile, owing to the functionalization of Raman reporter and lipophilic fluorophore, GBM-PDTCM@AuNRs are able to generate fluorescence and Raman signals at GBM lesion, and almost all tumor can be precisely resected in 15 min by the guidance of dual signals, ameliorating the surgical treatment for advanced GBM. In addition, photothermal therapy for orthotopic xenograft mice is accomplished by intravenous injection of GBM-PDTCM@AuNRs, doubling the median survival time of the mice, which improves the nonsurgical treatment for early GBM. Therefore, benefiting from homotypic membrane-enhanced BBB crossing and GBM targeting, all-stage GBM can be treated with GBM-PDTCM@AuNRs in distinct ways, providing an alternative idea for the therapy of tumor in the brain.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Barreira Hematoencefálica/metabolismo , Terapia Fototérmica , Membrana Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
19.
Brain Behav ; 13(5): e2969, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36978245

RESUMO

OBJECTIVE: The structural alteration that occurs within the salience network (SN) in patients with insular glioma is unclear. Therefore, we aimed to investigate the changes in the topological network and brain structure alterations within the SN in patients with insular glioma. METHODS: We enrolled 46 patients with left insular glioma, 39 patients with right insular glioma, and 21 demographically matched healthy controls (HCs). We compared the topological network, gray matter (GM) volume, and fractional anisotropy (FA) between HCs and patients after controlling for the effects of age and gender. RESULTS: Patients with insular glioma showed topological network decline mainly in the insula, basal ganglia region, and anterior cingulate cortex (ACC). Compared with HCs, patients primarily showed GM volume increased in the ACC, inferior temporal gyrus (ITG), superior temporal gyrus (STG), temporal pole: middle temporal gyrus (TPOmid), insula, middle temporal gyrus (MTG), middle frontal gyrus, and superior occipital gyrus (SOG), but decreased in TPOmid, ITG, temporal pole: superior temporal gyrus, and SOG. FA declined mainly in the STG, MTG, ACC, superior frontal gyrus, and SOG, and also showed an increased cluster in SOG. CONCLUSIONS: FA represents the integrity of the white matter. In patients with insular glioma, decreased FA may lead to the destruction of the topological network within the SN, which in turn may lead to the decrease of network efficiency and brain function, and the increase of GM volume may compensate for these changes. Overall, this pattern of structural changes provides new insight into the compensation model of insular glioma.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Humanos , Encéfalo , Substância Cinzenta/diagnóstico por imagem , Mapeamento Encefálico , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...