Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(2): 1371-1380, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38060408

RESUMO

Respiratory masks are the primary and most effective means of protecting individuals from airborne hazards such as droplets and particulate matter during public engagements. However, conventional electrostatically charged melt-blown microfiber masks typically require thick and dense membranes to achieve high filtration efficiency, which in turn cause a significant pressure drop and reduce breathability. In this study, we have developed a multielectrospinning system to address this issue by manipulating the pore structure of nanofiber networks, including the use of uniaxially aligned nanofibers created via an electric-field-guided electrospinning apparatus. In contrast to the common randomly collected microfiber membranes, partially aligned dual-nanofiber membranes, which are fabricated via electrospinning of a random 150 nm nanofiber base layer and a uniaxially aligned 450 nm nanofiber spacer layer on a roll-to-roll collector, offer an efficient way to modulate nanofiber membrane pore structures. Notably, the dual-nanofiber configuration with submicron pore structure exhibits increased fiber density and decreased volume density, resulting in an enhanced filtration efficiency of over 97% and a 50% reduction in pressure drop. This leads to the highest quality factor of 0.0781. Moreover, the submicron pore structure within the nanofiber networks introduces an additional sieving filtration mechanism, ensuring superior filtration efficiency under highly humid conditions and even after washing with a 70% ethanol solution. The nanofiber mask provides a sustainable solution for safeguarding the human respiratory system, as it effectively filters and inactivates human coronaviruses while utilizing 130 times fewer polymeric materials than melt-blown filters. This reusability of our filters and their minimum usage of polymeric materials would significantly reduce plastic waste for a sustainable global society.


Assuntos
Filtros de Ar , Nanofibras , Humanos , Nanofibras/química , Filtração , Polímeros
2.
ACS Nano ; 16(6): 9762-9771, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35687870

RESUMO

Rapid charging capability is a requisite feature of lithium-ion batteries (LIBs). To overcome the capacity degradation from a steep Li-ion concentration gradient during the fast reaction, electrodes with tailored transport kinetics have been explored by managing the geometries. However, the traditional electrode fabrication process has great challenges in precisely controlling and implementing the desired pore networks and configuration of electrode materials. Herein, we demonstrate a density-graded composite electrode that arises from a three-dimensional current collector in which the porosity gradually decreases to 53.8% along the depth direction. The density-graded electrode effectively reduces energy loss at high charging rates by mitigating polarization. This electrode shows an outstanding capacity of 94.2 mAh g-1 at a fast current density of 59.7 C (20 A g-1), which is much higher than that of an electrode with a nearly constant density gradient (38.0 mAh g-1). Through these in-depth studies on the pore networks and their transport kinetics, we describe the design principle of rational electrode geometries for ultrafast charging LIBs.

3.
Chem Eng J ; 444: 136460, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35463870

RESUMO

Most respiratory masks are made of fabrics, which only capture the infectious virus carriers into the matrix. However, these contagious viruses stay active for a long duration (∼7 days) within the fabric matrix possibly inducing post-contact transmissions. Moreover, conventional masks are vulnerable to bacterial growth with prolonged exposure to exhaled breaths. Herein, we combined violacein, a naturally-occurring antimicrobial agent, with porous nanofiber membranes to develop a series of functional filters that autonomously sterilizes viruses and bacteria. The violacein-embedded membrane inactivates viruses within 4 h (99.532 % reduction for influenza and 99.999 % for human coronavirus) and bacteria within 2 h (75.5 % reduction). Besides, its nanofiber structure physically filters out the nanoscale (<0.8 µm) and micron-scale (0.8 µm - 3 µm) particulates, providing high filtration efficiencies (99.7 % and 100 % for PM 1.0 and PM 10, respectively) with long-term stability (for 25 days). In addition, violacein provides additional UV-resistant property, which protects the skin from sunlight. The violacein-embedded membrane not only proved the sterile efficacy of microbe extracted pigments for biomedical products but also provided insights to advance the personal protective equipment (PPE) to fight against contagious pathogens.

4.
ACS Appl Mater Interfaces ; 12(50): 55756-55765, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33237745

RESUMO

It is evident that the exhaustive use of fossil fuels for decades has significantly contributed to global warming and environmental pollution. To mitigate the harm on the environment, lithium-oxygen batteries (LOBs) with a high theoretical energy density (3458 Wh kg-1Li2O2) compared to that of Li-ion batteries (LIBs) have been considered as an attractive alternative to fossil fuels. For this purpose, porous carbon materials have been utilized as promising air cathodes owing to their low cost, lightness, easy fabrication process, and high performance. However, the challenge thus far lies in the uncontrollable formation of Li2CO3 at the interface between carbon and Li2O2, which is detrimental to the stable electrochemical performance of carbon-based cathodes in LOBs. In this work, we successfully protected the surface of the free-standing carbon nanofibers (CNFs) by coating it with a layer of iridium metal through direct sputtering (CNFs@Ir), which significantly improved the lifespan of LOBs. Moreover, the Ir would play a secondary role as an electrochemical catalyst. This all-in-one cathode was evaluated for the formation and decomposition of Li2O2 during (dis)charging processes. Compared with bare CNFs, the CNFs@Ir cathode showed two times longer lifespan with 0.2 VLi lower overpotentials for the oxygen evolution reaction. We quantitatively calculated the contents of CO32- in Li2CO3 formed on the different surfaces of the bare CNFs (63% reduced) and the protected CNFs@Ir (78% reduced) cathodes after charging. The protective effects and the reaction mechanism were elucidated by ex situ analyses, including scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy.

5.
ACS Appl Mater Interfaces ; 10(51): 44678-44685, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30489065

RESUMO

Real-time temperature monitoring of individual blood packages capable of wireless data transmission to ensure the safety of blood samples and minimize wastes has become a critical issue in recent years. In this work, we propose flexible temperature sensors using silver nanowires (NWs) and a flexible colorless polyimide (CPI) film integrated with a wireless data transmission circuit. The unique design of the temperature sensors was achieved by patterning Ag NWs using a three-dimensional printed mold and embedding the patterned Ag NWs in the CPI film (p-Ag NWs/CPI), which resulted in a flexible temperature sensor with electrical, mechanical, and temperature stability for applications in blood temperature monitoring. Indeed, a reliable resistance change of the p-Ag NWs/CPI was observed in the temperature range of -20 to 20 °C with a robust bending stability of up to 5000 cycles at 5 mm bending radius. Real-time and wireless temperature monitoring using the p-Ag NWs/CPI was demonstrated with the packages of rat blood. The result revealed that the stable and consistent temperature monitoring of individual blood packages could be achieved in a blood box, which was mainly attributed to the conformal attachment of the p-Ag NWs/CPI to different packages in a blood container.


Assuntos
Sangue , Nanopartículas Metálicas/química , Nanofios/química , Prata , Termometria , Tecnologia sem Fio , Animais , Ratos , Ratos Sprague-Dawley , Prata/química , Prata/farmacologia , Temperatura , Termometria/instrumentação , Termometria/métodos
6.
Nanoscale ; 10(17): 7927-7932, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29671446

RESUMO

Reliable performances with a long lifetime are the most important factors of transparent conducting electrodes (TCEs). Here, we report a new synthesis strategy for high-performance TCEs based on the fusion of a polyimide (PI) substrate and silver layer-coated PI nanofibers. Due to the successful fusion of the substrate into the core without immiscibility, the as-synthesized TCEs showed excellent performances (a sheet resistance of 1.33 Ω sq-1 and a total optical transmittance of 88%) even after 100 000 bending cycles at a bending radius of 1.75 mm.

7.
ACS Appl Mater Interfaces ; 9(45): 39650-39656, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29072068

RESUMO

Metal nanowires have been considered as essential components for flexible transparent conducting electrodes (TCEs) with high transparency and low sheet resistance. However, large surface roughness and high interwire junction resistance limit the practical use of metal wires as TCEs. Here, we report Cu microbelt network (Cu MBN) with coalescence junction and low surface roughness for next-generation flexible TCEs. In particular, the unique embedded structure of Cu MBN in colorless polyimide (cPI) film was achieved to reduce the surface roughness as well as enhance mechanical stability. The TCEs using junction-free Cu MBN embedded in cPI exhibited excellent mechanical stability up to 100 000 bending cycles, high transparency of 95.18%, and a low sheet resistance of 6.25 Ω sq-1. Highly robust Cu MBN-embedded cPI-based TCE showed outstanding flexible heater performance, i.e., high saturation temperature (120 °C) at very low voltage (2.3 V), owing to the high thermal stability of cPI and excellent thermal conductivity of the Cu MBN.

8.
Small ; 13(19)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28322499

RESUMO

Safe and long cycle life electrode materials for lithium-ion batteries are significantly important to meet the increasing demands of rechargeable batteries. Niobium pentoxide (Nb2 O5 ) is one of the highly promising candidates for stable electrodes due to its safety and minimal volume expansion. Nevertheless, pulverization and low conductivity of Nb2 O5 have remained as inherent challenges for its practical use as viable electrodes. A highly facile method is proposed to improve the overall cycle retention of Nb2 O5 microparticles by ammonia (NH3 ) gas-driven nitridation. After nitridation, an ultrathin surficial layer (2 nm) is formed on the Nb2 O5 , acting as a bifunctional nanolayer that allows facile lithium (Li)-ion transport (10-100 times higher Li diffusivity compared with pristine Nb2 O5 microparticles) and further prevents the pulverization of Nb2 O5 . With the subsequent decoration of silver (Ag) nanoparticles (NPs), the low electric conductivity of nitridated Nb2 O5 is also significantly improved. Cycle retention is greatly improved for nitridated Nb2 O5 (96.7%) compared with Nb2 O5 (64.7%) for 500 cycles. Ag-decorated, nitridated Nb2 O5 microparticles and nitridated Nb2 O5 microparticles exhibit ultrastable cycling for 3000 cycles at high current density (3000 mA g-1 ), which highlights the importance of the surficial nanolayer in improving overall electrochemical performances, in addition to conductive NPs.

9.
ACS Nano ; 10(12): 11317-11326, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024325

RESUMO

The combination of high-capacity and long-term cyclability has always been regarded as the first priority for next generation anode materials in lithium-ion batteries (LIBs). To meet these requirements, the Ag nanoparticle decorated mesoporous SnO2/NiO nanotube (m-SNT) anodes were synthesized via an electrospinning process, followed by fast ramping rate calcination and subsequent chemical reduction in this work. The one-dimensional porous hollow structure effectively alleviates a large volume expansion during cycling as well as provides a short lithium-ion duffusion length. Furthermore, metallic nickel (Ni) nanoparticles converted from the NiO nanograins during the lithiation process reversibly decompose Li2O during delithiation process, which significantly improves the reversible capacity of the m-SNT anodes. In addition, Ag nanoparticles uniformly decorated on the m-SNT via a simple chemical reduction process significantly improve rate capability and also contribute to long-term cyclability. The m-SNT@Ag anodes exhibited excellent cycling stability without obvious capacity fading after 500 cycles with a high capacity of 826 mAh g-1 at a high current density of 1000 mA g-1. Furthermore, even at a very high current density of 5000 mA g-1, the charge-specific capacity remained as high as 721 mAh g-1, corresponding to 60% of its initial capacity at a current density of 100 mA g-1.

10.
ChemSusChem ; 9(16): 2080-8, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27453065

RESUMO

The development of efficient bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key issue pertaining high performance Li-O2 batteries. Here, we propose a heterogeneous electrocatalyst consisting of LaMnO3 nanofibers (NFs) functionalized with RuO2 nanoparticles (NPs) and non-oxidized graphene nanoflakes (GNFs). The Li-O2 cell employing the tailored catalysts delivers an excellent electrochemical performance, affording significantly reduced discharge/charge voltage gaps (1.0 V at 400 mA g(-1) ), and superior cyclability for over 320 cycles. The outstanding performance arises from (1) the networked LaMnO3 NFs providing ORR/OER sites without severe aggregation, (2) the synergistic coupling of RuO2 NPs for further improving the OER activity and the electrical conductivity on the surface of the LaMnO3 NFs, and (3) the use of GNFs providing a fast electronic pathway as well as improved ORR kinetics.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Oxigênio/química , Catálise , Eletroquímica , Modelos Moleculares , Conformação Molecular , Oxirredução , Água/química
11.
Anal Chem ; 85(3): 1792-6, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23252728

RESUMO

Thin-walled WO(3) hemitubes and catalytic Pt-functionalized WO(3) hemitubes were synthesized via a polymeric fiber-templating route and used as exhaled breath sensing layers for potential diagnosis of halitosis and diabetes through the detection of H(2)S and CH(3)COCH(3), respectively. Pt-functionalized WO(3) hemitubes with wall thickness of 60 nm exhibited superior acetone sensitivity (R(air)/R(gas) = 4.11 at 2 ppm) with negligible H(2)S response, and pristine WO(3) hemitubes showed a 4.90-fold sensitivity toward H(2)S with minimal acetone-sensing characteristics. The detection limit (R(air)/R(gas)) of the fabricated sensors with Pt-functionalized WO(3) hemitubes was 1.31 for acetone of 120 ppb, and pristine WO(3) hemitubes showed a gas response of 1.23 at 120 ppb of H(2)S. Long-term stability tests revealed that the remarkable selectivity has been maintained after aging for 7 months in air. The superior cross-sensitivity and response to H(2)S and acetone gas offer a potential platform for application in diabetes and halitosis diagnosis.


Assuntos
Acetona/química , Testes Respiratórios/métodos , Diabetes Mellitus/diagnóstico , Nanotubos/química , Óxidos/química , Platina/química , Tungstênio/química , Testes Respiratórios/instrumentação , Diabetes Mellitus/metabolismo , Expiração/fisiologia , Humanos , Difração de Raios X
12.
ACS Appl Mater Interfaces ; 3(5): 1385-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21476592

RESUMO

Submicroscale SiC fiber mats were prepared by the electrospinning of an oil-in-water(O/W) precursor emulsion, a subsequent thermal curing treatment, and calcination at 1600 °C. Low-molecular-weight PCS micelles entrapped within an aqueous PVP matrix played an important role in forming the continuous and dense core structure, resulting in pure SiC fibers. The manipulation of SiC fiber diameters could be obtained via control of the micellar PCS concentration (10-30 wt %), enabling the production of dense and highly crystallized SiC fiber architectures with diameters ranging from 200 to 350 nm.

13.
ACS Nano ; 3(9): 2623-31, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19685904

RESUMO

Thin (0.5 to 1 microm) layers of nonaligned or quasi-aligned hollow ZnO fibers were prepared by sputtering ZnO onto sacrificial templates comprising polyvinyl-acetate (PVAc) fibers deposited by electrospinning on silicon or alumina substrates. Subsequently, the ZnO/PVAc composite fibers were calcined to remove the organic components and crystallize the ZnO overlayer, resulting in hollow fibers comprising nanocrystalline ZnO shells with an average grain size of 23 nm. The inner diameter of the hollow fibers ranged between 100 and 400 nm and their wall thickness varied from 100 to 40 nm from top to bottom. The electronic transport and gas sensing properties were examined using DC conductivity and AC impedance spectroscopy measurements under exposure to residual concentrations (2-10 ppm) of NO(2) in air at elevated temperatures (200-400 degrees C). The inner and outer surface regions of the hollow ZnO fibers were depleted of mobile charge carriers, presumably due to electron localization at O(-) adions, constricting the current to flow through their less resistive cores. The overall impedance comprised interfacial and bulk contributions. Both contributions increased upon exposure to electronegative gases such as NO(2) but the bulk contribution was more sensitive than the interfacial one. The hollow ZnO fibers were much more sensitive compared to reference ZnO thin film specimens, displaying even larger sensitivity enhancement than the 2-fold increase in their surface to volume ratio. The quasi-aligned fibers were more sensitive than their nonaligned counterparts.


Assuntos
Condutividade Elétrica , Nanoestruturas/química , Polivinil/química , Óxido de Zinco/química , Adsorção , Impedância Elétrica , Eletrônica , Dióxido de Nitrogênio/química
14.
Chem Commun (Camb) ; (27): 4019-21, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19568619

RESUMO

Close packed arrays of hollow SnO2 hemispheres were prepared using PMMA microspheres as sacrificial templates for subsequent sputter-deposition of SnO2 films, leading to a threefold enhancement in gas sensitivity compared to non-templated (flat) films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA