Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 5198, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701722

RESUMO

Although ASXL1 mutations are frequently found in human diseases, including myeloid leukemia, the cell proliferation-associated function of ASXL1 is largely unknown. Here, we explored the molecular mechanism underlying the growth defect found in Asxl1-deficient mouse embryonic fibroblasts (MEFs). We found that Asxl1, through amino acids 371 to 655, interacts with the kinase domain of AKT1. In Asxl1-null MEFs, IGF-1 was unable to induce AKT1 phosphorylation and activation; p27Kip1, which forms a ternary complex with ASXL1 and AKT1, therefore remained unphosphorylated. Hypophosphorylated p27Kip1 is able to enter the nucleus, where it prevents the phosphorylation of Rb; this ultimately leads to the down-regulation of E2F target genes as confirmed by microarray analysis. We also found that senescence-associated (SA) genes were upregulated and that SA ß-gal staining was increased in Asxl1 -/- MEFs. Further, the treatment of an AKT inhibitor not only stimulated nuclear accumulation of p27Kip1 leading to E2F inactivation, but also promoted senescence. Finally, Asxl1 disruption augmented the expression of p16Ink4a as result of the defect in Asxl1-Ezh2 cooperation. Overall, our study provides the first evidence that Asxl1 both activates the AKT-E2F pathway and cooperates with Ezh2 through direct interactions at early embryonic stages, reflecting that Asxl1 disruption causes cellular senescence.


Assuntos
Senescência Celular , Fatores de Transcrição E2F/antagonistas & inibidores , Embrião de Mamíferos/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Fibroblastos/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Repressoras/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Embrião de Mamíferos/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
Biochem Biophys Res Commun ; 444(4): 605-10, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24486547

RESUMO

Transcriptional activity of the retinoic acid receptor (RAR) is regulated by diverse binding partners, including classical corepressors and coactivators, in response to its ligand retinoic acid (RA). Recently, we identified a novel corepressor of RAR called the retinoic acid resistance factor (RaRF) (manuscript submitted). Here, we report how adenovirus E1A stimulates RAR activity by associating with RaRF. Based on immunoprecipitation (IP) assays, E1A interacts with RaRF through the conserved region 2 (CR2), which is also responsible for pRb binding. The first coiled-coil domain of RaRF was sufficient for this interaction. An in vitro glutathione-S-transferase (GST) pull-down assay was used to confirm the direct interaction between E1A and RaRF. Further fluorescence microscopy indicated that E1A and RaRF were located in the nucleoplasm and nucleolus, respectively. However, RaRF overexpression promoted nucleolar translocation of E1A from the nucleoplasm. Both the RA-dependent interaction of RAR with RaRF and RAR translocation to the nucleolus were disrupted by E1A. RaRF-mediated RAR repression was impaired by wild-type E1A, but not by the RaRF binding-defective E1A mutant. Taken together, our data suggest that E1A is sequestered to the nucleolus by RaRF through a specific interaction, thereby leaving RAR in the nucleoplasm for transcriptional activation.


Assuntos
Infecções por Adenoviridae/metabolismo , Adenoviridae/fisiologia , Proteínas E1A de Adenovirus/metabolismo , Nucléolo Celular/virologia , Interações Hospedeiro-Patógeno , Receptores do Ácido Retinoico/metabolismo , Proteínas Repressoras/metabolismo , Adenoviridae/química , Adenoviridae/metabolismo , Infecções por Adenoviridae/virologia , Proteínas E1A de Adenovirus/análise , Linhagem Celular , Nucléolo Celular/metabolismo , Humanos , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Receptores do Ácido Retinoico/análise , Proteínas Repressoras/análise , Tretinoína/metabolismo
3.
Biochem Biophys Res Commun ; 404(1): 239-44, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21110951

RESUMO

Retinoic acid (RA) plays a role in cancer therapy. However, its long-term treatment is hindered by the acquired resistance which is not fully understood. Our previous study indicated that the transcriptional activity of RA receptor (RAR) is enhanced by association of MED25 with CREB-binding protein (CBP) through the PTOV domain, which is also present in prostate tumor over-expressed protein 1 (PTOV1). Here, we show that MED25 and PTOV1 reciprocally regulate RAR transcriptional activity through competitive bindings to CBP and opposite regulation of CBP recruitment to the RA-responsive gene promoter. Finally, we demonstrate that MED25 and PTOV1 differentially modulate RA sensitivity in cancer cells depending on their expression levels, suggesting a potential molecular mechanism underlying RA resistance which frequently emerges during cancer treatments.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Complexo Mediador/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Receptores do Ácido Retinoico/metabolismo , Ativação Transcricional , Tretinoína/farmacologia , Proteína de Ligação a CREB/metabolismo , Linhagem Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Humanos , Complexo Mediador/metabolismo , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA