Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Host Microbe ; 31(11): 1850-1865.e5, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37909048

RESUMO

The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Humanos , Anticorpos Antivirais , Anticorpos Neutralizantes , Proteínas do Envelope Viral/genética , Glicoproteínas , Vacinação
2.
mBio ; 14(5): e0081823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800919

RESUMO

IMPORTANCE: The four dengue virus (DENV) serotypes infect several hundred million people each year. Although primary infection is generally mild, subsequent infection by differing serotypes increases the risk for symptomatic disease ranging from fever to life-threatening shock. Despite the availability of licensed vaccines, a comprehensive understanding of antibodies that target the viral envelope protein and protect from infection remains incomplete. In this manuscript, we develop a panel of recombinant viruses that graft each envelope domain of DENV2 onto the DENV4 envelope glycoprotein, revealing protein interactions important for virus viability. Furthermore, we map neutralizing antibody responses after primary DENV2 natural infection and a human challenge model to distinct domains on the viral envelope protein. The panel of recombinant viruses provides a new tool for dissecting the E domain-specific targeting of protective antibody responses, informing future DENV vaccine design.


Assuntos
Vírus da Dengue , Dengue , Humanos , Anticorpos Antivirais , Proteínas do Envelope Viral/genética , Sorogrupo , Anticorpos Neutralizantes
3.
Front Plant Sci ; 14: 1209445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575936

RESUMO

Garden roses are an economically important horticultural crop worldwide, and two major fungal pathogens, black spot (Diplocarpon rosae F.A. Wolf) and cercospora leaf spot of rose (Rosisphaerella rosicola Pass.), affect both the health and ornamental value of the plant. Most studies on black spot disease resistance have focused on diploid germplasm, and little work has been performed on cercospora leaf spot resistance. With the use of newly developed software tools for autopolyploid genetics, two interconnected tetraploid garden rose F1 populations (phenotyped over the course of 3 years) were used for quantitative trait locus (QTL) analysis of black spot and cercospora leaf spot resistance as well as plant defoliation. QTLs for black spot resistance were mapped to linkage groups (LGs) 1-6. QTLs for cercospora resistance and susceptibility were found in LGs 1, 4, and 5 and for defoliation in LGs 1, 3, and 5. The major locus on LG 5 for black spot resistance coincides with the previously discovered Rdr4 locus inherited from Rosa L. 'Radbrite' (Brite Eyes™), the common parent used in these mapping populations. This work is the first report of any QTL for cercospora resistance/susceptibility in tetraploid rose germplasm and the first report of defoliation QTL in roses. A major QTL for cercospora susceptibility coincides with the black spot resistance QTL on LG 5 (Rdr4). A major cercospora resistance QTL was found on LG 1. These populations provide a genetic resource that will further the knowledge base of rose genetics as more traits are studied. Studying more traits from these populations will allow for the stacking of various QTLs for desirable traits.

4.
Front Plant Sci ; 14: 1226713, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650001

RESUMO

Rose (Rosa spp.) is one of the most economically important ornamental species worldwide. Flower diameter, flower weight, and the number of petals and petaloids are key flower-size parameters and attractive targets for DNA-informed breeding. Pedigree-based analysis (PBA) using FlexQTL software was conducted using two sets of multi-parental diploid rose populations. Phenotypic data for flower diameter (Diam), flower weight (fresh (FWT)/dry (DWT)), number of petals (NP), and number of petaloids (PD) were collected over six environments (seasons) at two locations in Texas. The objectives of this study were to 1) identify new and/or validate previously reported QTL(s); 2) identify SNP haplotypes associated with QTL alleles (Q-/q-) of a trait and their sources; and 3) determine QTL genotypes for important rose breeding parents. Several new and previously reported QTLs for NP and Diam traits were identified. In addition, QTLs associated with flower weight and PD were identified for the first time. Two major QTLs with large effects were mapped for all traits. The first QTL was at the distal end of LG1 (60.44-60.95 Mbp) and was associated with Diam and DWT in the TX2WOB populations. The second QTL was consistently mapped in the middle region on LG3 (30.15-39.34 Mbp) and associated with NP, PD, and flower weight across two multi-parent populations (TX2WOB and TX2WSE). Haplotype results revealed a series of QTL alleles with differing effects at important loci for most traits. This work is distinct from previous studies by conducting co-factor analysis to account for the DOUBLE FLOWER locus while mapping QTL for NP. Sources of high-value (Q) alleles were identified, namely, 'Old Blush' and Rosa wichuraiana from J14-3 for Diam, while 'Violette' and PP-J14-3 were sources for other traits. In addition, the source of the low-value (q) alleles for Diam was 'Little Chief', and Rosa wichuraiana through J14-3 was the source for the remaining traits. Hence, our results can potentially inform parental/seedling selections as means to improve ornamental quality in roses and a step towards implementing DNA-informed techniques for use in rose breeding programs.

5.
NPJ Biofilms Microbiomes ; 9(1): 17, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024470

RESUMO

The emergence of spatial organisation in biofilm growth is one of the most fundamental topics in biofilm biophysics and microbiology. It has long been known that growing biofilms can adopt smooth or rough interface morphologies, depending on the balance between nutrient supply and microbial growth; this 'fingering' transition has been linked with the average width of the 'active layer' of growing cells at the biofilm interface. Here we use long-time individual-based simulations of growing biofilms to investigate in detail the driving factors behind the biofilm-fingering transition. We show that the transition is associated with dynamical changes in the active layer. Fingering happens when gaps form in the active layer, which can cause local parts of the biofilm interface to pin, or become stationary relative to the moving front. Pinning can be transient or permanent, leading to different biofilm morphologies. By constructing a phase diagram for the transition, we show that the controlling factor is the magnitude of the relative fluctuations in the active layer thickness, rather than the active layer thickness per se. Taken together, our work suggests a central role for active layer dynamics in controlling the pinning of the biofilm interface and hence biofilm morphology.


Assuntos
Biofilmes , Biofilmes/crescimento & desenvolvimento
6.
Pathogens ; 12(4)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37111461

RESUMO

Rose rosette disease (RRD), caused by the rose rosette emaravirus (RRV), is a major viral disease in roses (Rosa sp.) that threatens the rose industry. Recent studies have revealed quantitative trait loci (QTL) for reduced susceptibility to RRD in the linkage groups (LGs) 1, 5, 6, and 7 in tetraploid populations and the LGs 1, 3, 5, and 6 in diploid populations. In this study, we seek to better localize and understand the relationship between QTL identified in both diploid and tetraploid populations. We do so by remapping the populations found in these studies and performing a meta-analysis. This analysis reveals that the peaks and intervals for QTL using diploid and tetraploid populations co-localized on LG 1, suggesting that these are the same QTL. The same was seen on LG 3. Three meta-QTL were identified on LG 5, and two were discovered on LG 6. The meta-QTL on LG 1, MetaRRD1.1, had a confidence interval (CI) of 10.53 cM. On LG 3, MetaRRD3.1 had a CI of 5.94 cM. MetaRRD5.1 had a CI of 17.37 cM, MetaRRD5.2 had a CI of 4.33 cM, and MetaRRD5.3 had a CI of 21.95 cM. For LG 6, MetaRRD6.1 and MetaRRD6.2 had CIs of 9.81 and 8.81 cM, respectively. The analysis also led to the identification of potential disease resistance genes, with a primary interest in genes localized in meta-QTL intervals on LG 5 as this LG was found to explain the greatest proportion of phenotypic variance for RRD resistance. The results from this study may be used in the design of more robust marker-based selection tools to track and use a given QTL in a plant breeding context.

7.
Nat Commun ; 14(1): 1371, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914616

RESUMO

The four dengue virus serotypes co-circulate globally and cause significant human disease. Dengue vaccine development is challenging because some virus-specific antibodies are protective, while others are implicated in enhanced viral replication and more severe disease. Current dengue tetravalent vaccines contain four live attenuated serotypes formulated to theoretically induce balanced protective immunity. Among the number of vaccine candidates in clinical trials, only Dengvaxia is licensed for use in DENV seropositive individuals. To simplify live-virus vaccine design, we identify co-evolutionary constraints inherent in flavivirus virion assembly and design chimeric viruses to replace domain II (EDII) of the DENV2 envelope (E) glycoprotein with EDII from DENV4. The chimeric DENV2/4EDII virus replicates efficiently in vitro and in vivo. In male macaques, a single inoculation of DENV2/4EDII induces type-specific neutralizing antibodies to both DENV2 and DENV4, thereby providing a strategy to simplify DENV vaccine design by utilizing a single bivalent E glycoprotein immunogen for two DENV serotypes.


Assuntos
Vírus da Dengue , Dengue , Masculino , Humanos , Vírus da Dengue/genética , Anticorpos Antivirais , Sorogrupo , Proteínas do Envelope Viral/genética , Anticorpos Neutralizantes
8.
Front Microbiol ; 13: 915095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966660

RESUMO

Microbial biofilms show high phenotypic and genetic diversity, yet the mechanisms underlying diversity generation and maintenance remain unclear. Here, we investigate how spatial patterns of growth activity within a biofilm lead to spatial patterns of genetic diversity. Using individual-based computer simulations, we show that the active layer of growing cells at the biofilm interface controls the distribution of lineages within the biofilm, and therefore the patterns of standing and de novo diversity. Comparing biofilms of equal size, those with a thick active layer retain more standing diversity, while de novo diversity is more evenly distributed within the biofilm. In contrast, equal-sized biofilms with a thin active layer retain less standing diversity, and their de novo diversity is concentrated at the top of the biofilm, and in fewer lineages. In the context of antimicrobial resistance, biofilms with a thin active layer may be more prone to generate lineages with multiple resistance mutations, and to seed new resistant biofilms via sloughing of resistant cells from the upper layers. Our study reveals fundamental "baseline" mechanisms underlying the patterning of diversity within biofilms.

9.
Front Plant Sci ; 13: 916231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873988

RESUMO

Rose rosette disease (RRD), caused by the Rose rosette emaravirus (RRV), is a major threat to the garden rose industry in the United States. There has been limited work on the genetics of host plant resistance to RRV. Two interconnected tetraploid garden rose F1 biparental mapping populations were created to develop high-quality tetraploid rose linkage maps that allowed the discovery of RRD resistance quantitative trait loci (QTLs) on linkage groups (LGs) 5, 6, and 7. These QTLs individually accounted for around 18-40% of the phenotypic variance. The locus with the greatest effect on partial resistance was found in LG 5. Most individuals with the LG 5 QTL were in the simplex configuration; however, two individuals were duplex (likely due to double reduction). Identification of resistant individuals and regions of interest can help the development of diagnostic markers for marker-assisted selection in a breeding program.

10.
Pathogens ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745514

RESUMO

Resistance to rose rosette disease (RRD), a fatal disease of roses (Rosa spp.), is a high priority for rose breeding. As RRD resistance is time-consuming to phenotype, the identification of genetic markers for resistance could expedite breeding efforts. However, little is known about the genetics of RRD resistance. Therefore, we performed a quantitative trait locus (QTL) analysis on a set of inter-related diploid rose populations phenotyped for RRD resistance and identified four QTLs. Two QTLs were found in multiple years. The most consistent QTL is qRRV_TX2WSE_ch5, which explains approximately 20% and 40% of the phenotypic variation in virus quantity and severity of RRD symptoms, respectively. The second, a QTL on chromosome 1, qRRD_TX2WSE_ch1, accounts for approximately 16% of the phenotypic variation for severity. Finally, a third QTL on chromosome 3 was identified only in the multiyear analysis, and a fourth on chromosome 6 was identified in data from one year only. In addition, haplotypes associated with significant changes in virus quantity and severity were identified for qRRV_TX2WSE_ch5 and qRRD_TX2WSE_ch1. This research represents the first report of genetic determinants of resistance to RRD. In addition, marker trait associations discovered here will enable better parental selection when breeding for RRD resistance and pave the way for marker-assisted selection for RRD resistance.

12.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791426

RESUMO

The deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Haploid organisms and selfing organisms like the nematode Caenorhabditis elegans are capable of rapid recovery from the fixation of novel deleterious mutation; however, the potential for recovery and genomic consequences of inbreeding in diploid, outcrossing organisms are not well understood. We sought to answer two questions: 1) Can a diploid, outcrossing population recover from inbreeding via standing genetic variation and new mutation? and 2) How does allelic diversity change during recovery? We inbred C. remanei, an outcrossing relative of C. elegans, through brother-sister mating for 30 generations followed by recovery at large population size. Inbreeding reduced fitness but, surprisingly, recovery from inbreeding at large populations sizes generated only very moderate fitness recovery after 300 generations. We found that 65% of ancestral single nucleotide polymorphisms (SNPs) were fixed in the inbred population, far fewer than the theoretical expectation of ∼99%. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous, and reproductive systems changed reproducibly across replicates, indicating that strong selection for fitness recovery does exist. Our results indicate that recovery from inbreeding depression via standing genetic variation and mutation is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for recovery of small populations.


Assuntos
Depressão por Endogamia , Alelos , Animais , Caenorhabditis elegans/genética , Endogamia , Masculino , Mutação
13.
Front Plant Sci ; 13: 1082461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684798

RESUMO

Cercospora leaf spot (CLS) (Cercospora rosicola) is a major fungal disease of roses (Rosa sp.) in the southeastern U.S. Developing CLS-resistant cultivars offers a potential solution to reduce pesticide use. Yet, no work has been performed on CLS resistance. This study aimed to identify QTLs and to characterize alleles for resistance to CLS. The study used pedigree-based QTL analysis to dissect the genetic basis of CLS resistance using two multi-parental diploid rose populations (TX2WOB and TX2WSE) evaluated across five years in two Texas locations. A total 38 QTLs were identified across both populations and distributed over all linkage groups. Three QTLs on LG3, LG4, and LG6 were consistently mapped over multiple environments. The LG3 QTL was mapped in a region between 18.9 and 27.8 Mbp on the Rosa chinensis genome assembly. This QTL explained 13 to 25% of phenotypic variance. The LG4 QTL detected in the TX2WOB population spanned a 35.2 to 39.7 Mbp region with phenotypic variance explained (PVE) up to 48%. The LG6 QTL detected in the TX2WSE population was localized to 17.9 to 33.6 Mbp interval with PVE up to 36%. Also, this study found multiple degrees of favorable allele effects (q-allele) associated with decreasing CLS at major loci. Ancestors 'OB', 'Violette', and PP-M4-4 were sources of resistance q-alleles. These results will aid breeders in parental selection to develop CLS-resistant rose cultivars. Ultimately, high throughput DNA tests that target major loci for CLS could be developed for routine use in a DNA-informed breeding program.

14.
Hortic Res ; 9: uhac183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37064269

RESUMO

Black spot disease (BSD) (Diplocarpon rosae) is the most common and damaging fungal disease in garden roses (Rosa sp.). Although qualitative resistance to BSD has been extensively investigated, the research on quantitative resistance lags behind. The goal of this research was to study the genetic basis of BSD resistance in two multi-parental populations (TX2WOB and TX2WSE) through a pedigree-based analysis approach (PBA). Both populations were genotyped and evaluated for BSD incidence over five years in three locations in Texas. A total of 28 QTLs, distributed over all linkage groups (LGs), were detected across both populations. Consistent minor effect QTLs included two on LG1 and LG3 (TX2WOB and TX2WSE), two on LG4 and LG5 (TX2WSE), and one QTL on LG7 (TX2WOB). In addition, one major QTL detected in both populations was consistently mapped on LG3. This QTL was localized to an interval ranging from 18.9 to 27.8 Mbp on the Rosa chinensis genome and explained 20 and 33% of the phenotypic variation. Furthermore, haplotype analysis showed that this QTL had three distinct functional alleles. The parent PP-J14-3 was the common source of the LG3 BSD resistance in both populations. Taken together, this research presents the characterization of new SNP-tagged genetic determinants of BSD resistance, the discovery of marker-trait associations to enable parental choice based on their BSD resistance QTL haplotypes, and substrates for the development of trait-predictive DNA tests for routine use in marker-assisted breeding for BSD resistance.

15.
PLoS Negl Trop Dis ; 15(3): e0009258, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33711074

RESUMO

The four dengue virus serotypes (DENV1-4) infect several hundred million people each year living in tropical and sub-tropical regions. Clinical development of DENV vaccines is difficult because immunity to a single serotype increases risk of severe disease during a second infection with a new serotype. Leading vaccines are based on tetravalent formulations to induce simultaneous and balanced protective immunity to all 4 serotypes. TAK-003 is a tetravalent live attenuated dengue vaccine candidate developed by Takeda Vaccines Inc, which is currently being evaluated in phase 3 efficacy trials. Here, we use antibody depletion methods and chimeric, epitope transplant DENVs to characterize the specificity of neutralizing antibodies in dengue-naïve adults and non-human primates immunized with TAK-003. Our results demonstrate that TAK-003 induced high levels of DENV2 neutralizing antibodies that recognized unique (type-specific) epitopes on DENV2. In contrast, most vaccinated subjects developed lower levels of DENV1, DENV3 and DENV4 neutralizing antibodies that mainly targeted epitopes that were conserved (cross-reactive) between serotypes. Trial Registration: ClinicalTrials.gov NCT02425098.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Adulto , Animais , Chlorocebus aethiops , Epitopos/imunologia , Haplorrinos , Humanos , Sorogrupo , Vacinação , Células Vero
16.
Int J Urol Nurs ; 14(2): 83-91, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32793298

RESUMO

INTRODUCTION: Urinary catheters are used extensively throughout healthcare for various reasons including management of urinary tract dysfunction. The purpose of this study was to simultaneously explore both catheter user experience and staff perception of catheter services within community urinary catheter care. METHODS: A questionnaire was conducted to investigate the views of community nursing staff. During the same time period, patients were interviewed about i) catheter-care standards and adherence to guidelines ii) patients' feelings towards their catheter and iii) potential improvements to catheter practices and design. RESULTS: Sixty-nine staff were surveyed. Although 97% of staff indicated they used local guidelines, in up to 62% of cases findings suggested practices in sending urine samples for culture did not comply with guidelines. Seventy-five percent of staff were satisfied with catheter care, but weaknesses were identified in handover processes, communication between staff and patients, and excessive documentation. Staff results were compared with the findings from interviews of 29 long-term urinary catheter users, demonstrating a higher level of satisfaction with catheter care amongst patients (86%). Patients and staff agreed that generally the impacts of their catheter on personal hygiene, sense of independence, sense of dignity and of patient happiness, were neutral (neither positive nor negative). However, regarding improvements to catheter practices and catheter design; 73% of staff but only 45% of patients suggested improvements in service, while 76% of patients but only 49% of staff suggested improvement in design. CONCLUSION: The study reveals general satisfaction with community catheter care, but indicates areas of potential improvements regarding communication, documentation and catheter design. When compared to patient responses, staff overall had a less positive view of patients perception of their relationship with their catheter.

17.
Cell Host Microbe ; 27(5): 710-724.e7, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32407709

RESUMO

The rational design of dengue virus (DENV) vaccines requires a detailed understanding of the molecular basis for antibody-mediated immunity. The durably protective antibody response to DENV after primary infection is serotype specific. However, there is an incomplete understanding of the antigenic determinants for DENV type-specific (TS) antibodies, especially for DENV serotype 3, which has only one well-studied, strongly neutralizing human monoclonal antibody (mAb). Here, we investigated the human B cell response in children after natural DENV infection in the endemic area of Nicaragua and isolated 15 DENV3 TS mAbs recognizing the envelope (E) glycoprotein. Functional epitope mapping of these mAbs and small animal prophylaxis studies revealed a complex landscape with protective epitopes clustering in at least 6-7 antigenic sites. Potently neutralizing TS mAbs recognized sites principally in E glycoprotein domains I and II, and patterns suggest frequent recognition of quaternary structures on the surface of viral particles.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Sorogrupo , Adolescente , Animais , Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Criança , Pré-Escolar , Chlorocebus aethiops , Vacinas contra Dengue , Vírus da Dengue/genética , Mapeamento de Epitopos , Epitopos/imunologia , Humanos , Camundongos , Modelos Moleculares , Nicarágua , Alinhamento de Sequência , Células Vero , Proteínas do Envelope Viral/imunologia , Vírion
18.
Sci Rep ; 9(1): 16258, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700029

RESUMO

The four dengue virus serotypes (DENV1-4) cause major public health problems worldwide. Highly neutralizing type-specific human monoclonal antibodies (hmAbs) target conformation-dependent epitopes on the DENV envelope protein, including 1F4, a DENV1 type-specific hmAb. Using a recombinant DENV2 virus displaying the DENV1 1F4 epitope (rDENV2/1), we measured the proportion and kinetics of DENV1 neutralizing antibodies targeting the 1F4 epitope in individuals living in Asia and the Americas where different DENV1 genotypes were circulating. Samples from 20 individuals were analyzed 3 and 18 months post-primary DENV1 infection, alongside samples from 4 individuals collected annually for four years post-primary DENV1 infection, from two studies in Nicaragua. We also analyzed convalescent post-primary DENV1 plasma samples from Sri Lankan individuals. We found that neutralizing antibodies recognizing the 1F4 epitope vary in prevalence across both populations and were detected from 20 days to four years post-infection. Additionally, both populations displayed substantial variability, with a range of high to low proportions of DENV1 type-specific neutralizing antibodies recognizing the 1F4 epitope seen across individuals. Thus, the 1F4 epitope is a major but not exclusive target of type-specific neutralizing antibodies post-primary infection with different DENV1 genotypes in Asia and Latin America, and additional epitopes likely contribute to type-specific neutralization of DENV1.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Dengue/epidemiologia , Dengue/imunologia , Epitopos/imunologia , Adolescente , América/epidemiologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Ásia/epidemiologia , Criança , Pré-Escolar , Reações Cruzadas , Dengue/virologia , Vírus da Dengue/classificação , Epitopos/química , Feminino , Humanos , Lactente , Masculino , Modelos Moleculares , Conformação Proteica , Sorogrupo
19.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534033

RESUMO

Flaviviruses are a diverse group of arthropod-borne viruses responsible for numerous significant public health threats; therefore, understanding the interactions between these viruses and the human immune response remains vital. West Nile virus (WNV) and Zika virus (ZIKV) infect human dendritic cells (DCs) and can block antiviral immune responses in DCs. Previously, we used mRNA sequencing and weighted gene coexpression network analysis (WGCNA) to define molecular signatures of antiviral DC responses following activation of innate immune signaling (RIG-I, MDA5, or type I interferon [IFN] signaling) or infection with WNV. Using this approach, we found that several genes involved in T cell cosignaling and antigen processing were not enriched in DCs during WNV infection. Using cis-regulatory sequence analysis, STAT5 was identified as a regulator of DC activation and immune responses downstream of innate immune signaling that was not activated during either WNV or ZIKV infection. Mechanistically, WNV and ZIKV actively blocked STAT5 phosphorylation downstream of RIG-I, IFN-ß, and interleukin-4 (IL-4), but not granulocyte-macrophage colony-stimulating factor (GM-CSF), signaling. Unexpectedly, dengue virus serotypes 1 to 4 (DENV1 to DENV4) and the yellow fever 17D vaccine strain (YFV-17D) did not antagonize STAT5 phosphorylation. In contrast to WNV, ZIKV inhibited JAK1 and TYK2 phosphorylation following type I IFN treatment, suggesting divergent mechanisms used by these viruses to inhibit STAT5 activation. Combined, these findings identify STAT5 as a target of antagonism by specific pathogenic flaviviruses to subvert the immune response in infected DCs.IMPORTANCE Flaviviruses are a diverse group of insect-borne viruses responsible for numerous significant public health threats. Previously, we used a computational biology approach to define molecular signatures of antiviral DC responses following activation of innate immune signaling or infection with West Nile virus (WNV). In this work, we identify STAT5 as a regulator of DC activation and antiviral immune responses downstream of innate immune signaling that was not activated during either WNV or Zika virus (ZIKV) infection. WNV and ZIKV actively blocked STAT5 phosphorylation downstream of RIG-I, IFN-ß, and IL-4, but not GM-CSF, signaling. However, other related flaviviruses, dengue virus serotypes 1 to 4 and the yellow fever 17D vaccine strain, did not antagonize STAT5 phosphorylation. Mechanistically, WNV and ZIKV showed differential inhibition of Jak kinases upstream of STAT5, suggesting divergent countermeasures to inhibit STAT5 activation. Combined, these findings identify STAT5 as a target of antagonism by specific pathogenic flaviviruses to subvert antiviral immune responses in human DCs.


Assuntos
Flavivirus/imunologia , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/fisiologia , Febre do Nilo Ocidental/imunologia , Infecção por Zika virus/imunologia , Animais , Chlorocebus aethiops , Proteína DEAD-box 58 , Células Dendríticas/imunologia , Células Dendríticas/virologia , Dengue/imunologia , Vírus da Dengue/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade Inata/genética , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon , Interferon beta/metabolismo , Fosforilação , Receptores Imunológicos , Transdução de Sinais/genética , Células Vero , Vírus do Nilo Ocidental , Zika virus
20.
mBio ; 10(5)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530669

RESUMO

Zika virus (ZIKV) is a flavivirus that is structurally highly similar to the related viruses, dengue virus (DENV), West Nile virus, and yellow fever virus. ZIKV causes an acute infection that often results in mild symptoms but that can cause severe disease in rare instances. Following infection, individuals mount an adaptive immune response, composed of antibodies (Abs) that target the envelope (E) glycoprotein of ZIKV, which covers the surface of the virus. Groups have studied monoclonal antibodies and polyclonal immune sera isolated from individuals who recovered from natural ZIKV infections. Some of these antibodies bind to domain III of E (EDIII), but the functional importance of these antibodies is unknown. In this study, we aimed to determine if EDIII is a major target of the potent serum neutralizing antibodies present in people after ZIKV infection. By generating a chimeric virus containing ZIKV EDIII in a DENV4 virus backbone, our data show a minor role of EDIII-targeting antibodies in human polyclonal neutralization. These results reveal that while monoclonal antibody (MAb) studies are informative in identifying individual antibody epitopes, they can overestimate the importance of epitopes contained within EDIII as targets of serum neutralizing antibodies. Additionally, these results argue that the major target of human ZIKV neutralizing antibodies resides elsewhere in E; however, further studies are needed to assess the epitope specificity of the neutralizing response at the population level. Identification of the major epitopes on the envelope of ZIKV recognized by serum neutralizing antibodies is critical for understanding protective immunity following natural infection and for guiding the design and evaluation of vaccines.IMPORTANCE Zika virus is a flavivirus that was recently introduced to Latin America, where it caused a massive epidemic. Individuals infected with ZIKV generate an immune response composed of antibodies which bind to the envelope (E) protein. These anti-E antibodies are critical in protecting individuals from subsequent infection. Multiple groups have found that many ZIKV antibodies bind to domain III of E (EDIII), suggesting that this region is an important target of neutralizing antibodies. Here, we generated a chimeric virus containing ZIKV EDIII in a dengue virus backbone to measure ZIKV EDIII-specific antibody responses. We found that while polyclonal ZIKV immune serum contains antibodies targeting EDIII, they constitute only a small fraction of the total population of antibodies that neutralize ZIKV. Further studies are needed to define the main targets on the viral envelope recognized by human neutralizing antibodies, which is critical for guiding the development of ZIKV vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Zika virus/imunologia , Animais , Epitopos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos , Zika virus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...