Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787918

RESUMO

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.


Cancer cells convert nutrients into energy differently compared to healthy cells. This difference in metabolism allows them to grow and divide more quickly and sometimes to migrate to different areas of the body. The environment around cancer cells ­ known as the tumor microenvironment ­ contains a variety of different cells and blood vessels, which are bathed in interstitial fluid. This microenvironment provides nutrients for the cancer cells to metabolize, and therefore influences how well a tumor grows and how it might respond to treatment. Recent advances with techniques such as mass spectrometry, which can measure the chemical composition of a substance, have allowed scientists to measure nutrient levels in the tumor microenvironments of mice. However, it has been more difficult to conduct such studies in humans, as well as to compare the tumor microenvironment to the healthy tissue the tumors arose from. Abbott, Ali, Reinfeld et al. aimed to fill this gap in knowledge by using mass spectrometry to measure the nutrient levels in the tumor microenvironment of 55 patients undergoing surgery to remove kidney tumors. Comparing the type and levels of nutrients in the tumor interstitial fluid, the neighboring healthy kidney and the blood showed that nutrients in the tumor and healthy kidney were more similar to each other than those in the blood. For example, both the tumor and healthy kidney interstitial fluids contained less glucose than the blood. However, the difference between nutrient composition in the tumor and healthy kidney interstitial fluids was insignificant, suggesting that the healthy kidney and its tumor share a similar environment. Taken together, the findings indicate that kidney cancer cells must adapt to the nutrients available in the kidney, rather than changing what nutrients are available in the tissue. Future studies will be required to investigate whether this finding also applies to other types of cancer. A better understanding of how cancer cells adapt to their environments may aid the development of drugs that aim to disrupt the metabolism of tumors.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Metaboloma , Nutrientes , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/metabolismo , Nutrientes/metabolismo , Metabolômica/métodos , Microambiente Tumoral , Líquido Extracelular/metabolismo , Feminino , Masculino , Lipidômica
2.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38187626

RESUMO

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer driven tissue factors in shaping nutrient availability in these tumors.

3.
Cell Rep ; 42(12): 113461, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979170

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype with no targeted therapeutics. The luminal androgen receptor (LAR) subtype constitutes 15% of TNBC and is enriched for androgen receptor (AR) and AR target genes. Here, we show that a cohort of TNBC not only expresses AR at a much higher rate (∼80%) but also expresses AR splice variants (AR-SVs) (∼20%), further subclassifying LAR-TNBC. Higher AR and AR-SV expression and corresponding aggressive phenotypes are observed predominantly in specimens obtained from African American women. LAR TNBC specimens are enriched for interferon, Janus kinase (JAK)-signal activator and transducer (STAT), and androgen signaling pathways, which are exclusive to AR-expressing epithelial cancer cells. AR- and AR-SV-expressing TNBC cell proliferation and xenograft and patient-tumor explant growth are inhibited by AR N-terminal domain-binding selective AR degrader or by a JAK inhibitor. Biochemical analysis suggests that STAT1 is an AR coactivator. Collectively, our work identifies pharmacologically targetable TNBC subtypes and identifies growth-promoting interaction between AR and JAK-STAT signaling.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
4.
Proc Natl Acad Sci U S A ; 120(1): e2211832120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577061

RESUMO

Androgen receptor (AR) and its splice variants (AR-SVs) promote prostate cancer (PCa) growth by orchestrating transcriptional reprogramming. Mechanisms by which the low complexity and intrinsically disordered primary transactivation domain (AF-1) of AR and AR-SVs regulate transcriptional programming in PCa remains poorly defined. Using omics, live and fixed fluorescent microscopy of cells, and purified AF-1 and AR-V7 recombinant proteins we show here that AF-1 and the AR-V7 splice variant form molecular condensates by liquid-liquid phase separation (LLPS) that exhibit disorder characteristics such as rapid intracellular mobility, coactivator interaction, and euchromatin induction. The LLPS and other disorder characteristics were reversed by a class of small-molecule-selective AR-irreversible covalent antagonists (SARICA) represented herein by UT-143 that covalently and selectively bind to C406 and C327 in the AF-1 region. Interfering with LLPS formation with UT-143 or mutagenesis resulted in chromatin condensation and dissociation of AR-V7 interactome, all culminating in a transcriptionally incompetent complex. Biochemical studies suggest that C327 and C406 in the AF-1 region are critical for condensate formation, AR-V7 function, and UT-143's irreversible AR inhibition. Therapeutically, UT-143 possesses drug-like pharmacokinetics and metabolism properties and inhibits PCa cell proliferation and tumor growth. Our work provides critical information suggesting that clinically important AR-V7 forms transcriptionally competent molecular condensates and covalently engaging C327 and C406 in AF-1, dissolves the condensates, and inhibits its function. The work also identifies a library of AF-1-binding AR and AR-SV-selective covalent inhibitors for the treatment of PCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/metabolismo , Cisteína , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Linhagem Celular Tumoral , Isoformas de Proteínas/metabolismo
5.
J Immunol ; 207(12): 3122-3130, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34772698

RESUMO

Although obesity can promote cancer, it may also increase immunotherapy efficacy in what has been termed the obesity-immunotherapy paradox. Mechanisms of this effect are unclear, although obesity alters key inflammatory cytokines and can promote an inflammatory state that may modify tumor-infiltrating lymphocytes and tumor-associated macrophage populations. To identify mechanisms by which obesity affects antitumor immunity, we examined changes in cell populations and the role of the proinflammatory adipokine leptin in immunotherapy. Single-cell RNAseq demonstrated that obesity decreased tumor-infiltrating lymphocyte frequencies, and flow cytometry confirmed altered macrophage phenotypes with lower expression of inducible NO synthase and MHC class II in tumors of obese animals. When treated with anti-programmed cell death protein 1 (PD-1) Abs, however, obese mice had a greater absolute decrease in tumor burden than lean mice and a repolarization of the macrophages to inflammatory M1-like phenotypes. Mechanistically, leptin is a proinflammatory adipokine that is induced in obesity and may mediate enhanced antitumor immunity in obesity. To directly test the effect of leptin on tumor growth and antitumor immunity, we treated lean mice with leptin and observed tumors over time. Treatment with leptin, acute or chronic, was sufficient to enhance antitumor efficacy similar to anti-PD-1 checkpoint therapy. Further, leptin and anti-PD-1 cotreatment may enhance antitumor effects consistent with an increase in M1-like tumor-associated macrophage frequency compared with non-leptin-treated mice. These data demonstrate that obesity has dual effects in cancer through promotion of tumor growth while simultaneously enhancing antitumor immunity through leptin-mediated macrophage reprogramming.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Animais , Linhagem Celular Tumoral , Fatores Imunológicos/farmacologia , Imunoterapia , Linfócitos do Interstício Tumoral , Camundongos , Neoplasias/terapia , Obesidade/metabolismo
6.
Nature ; 593(7858): 282-288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828302

RESUMO

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Nutrientes/metabolismo , Microambiente Tumoral , Animais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...