Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
J Appl Physiol (1985) ; 136(5): 1105-1112, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482574

RESUMO

During spaceflight, fluids shift headward, causing internal jugular vein (IJV) distension and altered hemodynamics, including stasis and retrograde flow, that may increase the risk of thrombosis. This study's purpose was to determine the effects of acute exposure to weightlessness (0-G) on IJV dimensions and flow dynamics. We used two-dimensional (2-D) ultrasound to measure IJV cross-sectional area (CSA) and Doppler ultrasound to characterize venous blood flow patterns in the right and left IJV in 13 healthy participants (6 females) while 1) seated and supine on the ground, 2) supine during 0-G parabolic flight, and 3) supine during level flight (at 1-G). On Earth, in 1-G, moving from seated to supine posture increased CSA in both left (+62 [95% CI: +42 to 81] mm2, P < 0.0001) and right (+86 [95% CI: +58 to 113] mm2, P < 0.00012) IJV. Entry into 0-G further increased IJV CSA in both left (+27 [95% CI: +5 to 48] mm2, P = 0.02) and right (+30 [95% CI: +0.3 to 61] mm2, P = 0.02) relative to supine in 1-G. We observed stagnant flow in the left IJV of one participant during 0-G parabolic flight that remained during level flight but was not present during any imaging during preflight measures in the seated or supine postures; normal venous flow patterns were observed in the right IJV during all conditions in all participants. Alterations to cerebral outflow dynamics in the left IJV can occur during acute exposure to weightlessness and thus, may increase the risk of venous thrombosis during any duration of spaceflight.NEW & NOTEWORTHY The absence of hydrostatic pressure gradients in the vascular system and loss of tissue weight during weightlessness results in altered flow dynamics in the left internal jugular vein in some astronauts that may contribute to an increased risk of thromboembolism during spaceflight. Here, we report that the internal jugular veins distend bilaterally in healthy participants and that flow stasis can occur in the left internal jugular vein during acute weightlessness produced by parabolic flight.


Assuntos
Veias Jugulares , Ausência de Peso , Humanos , Feminino , Veias Jugulares/fisiologia , Veias Jugulares/diagnóstico por imagem , Masculino , Adulto , Ausência de Peso/efeitos adversos , Voo Espacial/métodos , Hemodinâmica/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Decúbito Dorsal/fisiologia , Adulto Jovem
3.
J Appl Physiol (1985) ; 136(4): 753-763, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38357726

RESUMO

Sleep and circadian temperature disturbances occur with spaceflight and may, in part, result from the chronically elevated carbon dioxide (CO2) levels on the international space station. Impaired sleep may contribute to decreased glymphatic clearance and, when combined with the chronic headward fluid shift during actual spaceflight or the spaceflight analog head-down tilt bed rest (HDTBR), may contribute to the development of optic disc edema. We determined if strict HDTBR combined with mildly elevated CO2 levels influenced sleep and core temperature and was associated with the development of optic disc edema. Healthy participants (5 females) aged 25-50 yr, underwent 30 days of strict 6° HDTBR with ambient Pco2 = 4 mmHg. Measures of sleep, 24-h core temperature, overnight transcutaneous CO2, and Frisén grade edema were made pre-HDTBR, on HDTBR days 4, 17, 28, and post-HDTBR days 4 and 10. During all HDTBR time points, sleep, core temperature, and overnight transcutaneous CO2 were not different than the pre-HDTBR measurements. However, independent of the HDTBR intervention, the odds ratios {mean [95% confidence interval (CI)]} for developing Frisén grade optic disc edema were statistically significant for each hour below the mean total sleep time (2.2 [1.1-4.4]) and stage 2 nonrapid eye movement (NREM) sleep (4.8 [1.3-18.6]), and above the mean for wake after sleep onset (3.6 [1.2-10.6]) and for each 0.1°C decrease in core temperature amplitude below the mean (4.0 [1.4-11.7]). These data suggest that optic disc edema occurring during HDTBR was more likely to occur in those with short sleep duration and/or blunted temperature amplitude.NEW & NOTEWORTHY We determined that sleep and 24-h core body temperature were unaltered by 30 days exposure to the spaceflight analog strict 6° head-down tilt bed rest (HDTBR) in a 0.5% CO2 environment. However, shorter sleep duration, greater wake after sleep onset, and lower core temperature amplitude present throughout the study were associated with the development of optic disc edema, a key finding of spaceflight-associated neuro-ocular syndrome.


Assuntos
Papiledema , Voo Espacial , Feminino , Humanos , Repouso em Cama , Duração do Sono , Dióxido de Carbono , Decúbito Inclinado com Rebaixamento da Cabeça , Temperatura , Hipercapnia , Sono
4.
Life Sci Space Res (Amst) ; 40: 151-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245340

RESUMO

Astronauts are known to exhibit a variety of immunological alterations during spaceflight including changes in leukocyte distribution and plasma cytokine concentrations, a reduction in T-cell function, and subclinical reactivation of latent herpesviruses. These alterations are most likely due to mission-associated stressors including circadian misalignment, microgravity, isolation, altered nutrition, and increased exposure to cosmic radiation. Some of these stressors may also occur in terrestrial situations. This study sought to determine if crewmembers performing winterover deployment at Palmer Station, Antarctica, displayed similar immune alterations. The larger goal was to validate a ground analog suitable for the evaluation of countermeasures designed to protect astronauts during future deep space missions. For this pilot study, plasma, saliva, hair, and health surveys were collected from Palmer Station, Antarctica, winterover participants at baseline, and at five winterover timepoints. Twenty-six subjects consented to participate over the course of two seasons. Initial sample processing was performed at Palmer, and eventually stabilized samples were returned to the Johnson Space Center for analysis. A white blood cell differential was performed (real time) using a fingerstick blood sample to determine alterations in basic leukocyte subsets throughout the winterover. Plasma and saliva samples were analyzed for 30 and 13 cytokines, respectively. Saliva was analyzed for cortisol concentration and three latent herpesviruses (DNA by qPCR), EBV, HSV1, and VZV. Voluntary surveys related to general health and adverse clinical events were distributed to participants. It is noteworthy that due to logistical constraints caused by COVID-19, the baseline samples for each season were collected in Punta Arenas, Chile, after long international travel and during isolation. Therefore, the Palmer pre-mission samples may not reflect a true normal 'baseline'. Minimal alterations were observed in leukocyte distribution during winterover. The mean percentage of monocyte concentration elevated at one timepoint. Plasma G-CSF, IL1RA, MCP-1, MIP-1ß, TNFα, and VEGF were decreased during at least one winterover timepoint, whereas RANTES was significantly increased. No statistically significant changes were observed in mean saliva cytokine concentrations. Salivary cortisol was substantially elevated throughout the entire winterover compared to baseline. Compared to shedding levels observed in healthy controls (23%), the percentage of participants who shed EBV was higher throughout all winterover timepoints (52-60%). Five subjects shed HSV1 during at least one timepoint throughout the season compared to no subjects shedding during pre-deployment. Finally, VZV reactivation, common in astronauts but exceptionally rare in ground-based stress analogs, was observed in one subject during pre-deployment and a different subject at WO2 and WO3. These pilot data, somewhat influenced by the COVID-19 pandemic, do suggest that participants at Palmer Station undergo immunological alterations similar to, but likely in reduced magnitude, as those observed in astronauts. We suggest that winterover at Palmer Station may be a suitable test analog for spaceflight biomedical countermeasures designed to mitigate clinical risks for deep space missions.


Assuntos
Hidrocortisona , Voo Espacial , Humanos , Hidrocortisona/análise , Regiões Antárticas , Pandemias , Projetos Piloto , Astronautas , Citocinas
5.
Physiol Meas ; 44(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37703896

RESUMO

Objective. Upcoming missions of the National Aeronautics and Space Administration (NASA) to the Moon will include extensive human exploration of the lunar surface. Walking will be essential for many exploration tasks, and metabolic cost during ambulation on simulated complex lunar surfaces requires further characterization. In this study, ten healthy subjects (6 male and 4 female) participated in three simulated lunar terrain walking conditions at the NASA Johnson Space Center's planetary 'Rock Yard': (1) flat terrain, (2) flat terrain with obstacles, and (3) mixed terrain.Approach.Energy expenditure and gait were quantified with a wearable metabolic energy expenditure monitoring system and body-worn inertial measurement units (IMUs), respectively.Main results.It was found that participants walking on the mixed terrain, representing the highest workload condition, required significantly higher metabolic costs than in other terrain conditions (p< 0.001). Additionally, our novel IMU-based gait variables discriminated different terrains and identified changes in gait in simulated lunar terrain environments.Significance.Our results showed that the various surface irregularities and inconsistencies could cause additional physical effort while walking on the complex terrain. These findings provide insight into the effects of terrain on metabolic energy expenditure during simulated lunar extravehicular activities.


Assuntos
Marcha , Lua , Humanos , Masculino , Feminino , Caminhada , Metabolismo Energético
7.
Invest Ophthalmol Vis Sci ; 64(3): 32, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988950

RESUMO

Purpose: Spaceflight-associated neuro-ocular syndrome (SANS) shares several clinical features with idiopathic intracranial-hypertension (IIH), namely disc edema, globe-flattening, hyperopia, and choroidal folds. Globe-flattening is caused by increased intracranial pressure (ICP) in IIH, but the cause in SANS is uncertain. If increased ICP alone causes SANS, then the ocular deformations should be similar to IIH; if not, alternative mechanisms would be implicated. Methods: Using optical coherence tomography (OCT) axial images of the optic nerve head, we compared "pre to post" ocular deformations in 22 patients with IIH to 25 crewmembers with SANS. We used two metrics to assess ocular deformations: displacements of Bruch's membrane opening (BMO-displacements) and Geometric Morphometrics to analyze peripapillary shape changes of Bruch's membrane layer (BML-shape). Results: We found a large disparity in the mean retinal nerve-fiber layer thickness between SANS (108 um; 95% confidence interval [CI] = 105-111 um) and IIH (300 um; 95% CI = 251-350.1 um). The pattern of BML-shape and BMO-displacements in SANS were significantly different from IIH (P < 0.0001). Deformations in IIH were large and preponderantly anterior, whereas the deformations in SANS were small and bidirectional. The degree of disc edema did not explain the differences in ocular deformations. Conclusions: This study showed substantial differences in the degree of disc edema and the pattern of ocular deformations between IIH and SANS. The precise cause for these differences is unknown but suggests that there may be fundamental differences in the underlying biomechanics of each consistent with the prevailing hypothesis that SANS is consequent to multiple factors beyond ICP alone. We propose a hypothetical model to explain the differences between IIH and SANS based on the pattern of indentation loads.


Assuntos
Hipertensão Intracraniana , Pseudotumor Cerebral , Humanos , Pseudotumor Cerebral/etiologia , Pseudotumor Cerebral/complicações , Pressão Intracraniana/fisiologia , Transtornos da Visão , Visão Ocular , Tomografia de Coerência Óptica/métodos , Hipertensão Intracraniana/complicações
8.
JAMA Ophthalmol ; 141(2): 168-175, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602790

RESUMO

Importance: The primary contributing factor for development of chorioretinal folds during spaceflight is unknown. Characterizing fold types that develop and tracking their progression may provide insight into the pathophysiology of spaceflight-associated neuro-ocular syndrome and elucidate the risk of fold progression for future exploration-class missions exceeding 12 months in duration. Objective: To determine the incidence and presentation of chorioretinal folds in long-duration International Space Station crew members and objectively quantify the progression of choroidal folds during spaceflight. Design, Setting, and Participants: In this retrospective cohort study, optical coherence tomography scans of the optic nerve head and macula of crew members completing long-duration spaceflight missions were obtained on Earth prior to spaceflight and during flight. A panel of experts examined the scans for the qualitative presence of chorioretinal folds. Peripapillary total retinal thickness was calculated to identify eyes with optic disc edema, and choroidal folds were quantified based on surface roughness within macular and peripapillary regions of interest. Interventions or Exposures: Spaceflight missions ranging 6 to 12 months. Main Outcomes and Measures: Incidence of peripapillary wrinkles, retinal folds, and choroidal folds; peripapillary total retinal thickness; and Bruch membrane surface roughness. Results: A total of 36 crew members were analyzed (mean [SD] age, 46 [6] years; 7 [19%] female). Chorioretinal folds were observed in 12 of 72 eyes (17%; 6 crew members). In eyes with early signs of disc edema, 10 of 42 (24%) had choroidal folds, 4 of 42 (10%) had inner retinal folds, and 2 of 42 (5%) had peripapillary wrinkles. Choroidal folds were observed in all eyes with retinal folds and peripapillary wrinkles. Macular choroidal folds developed in 7 of 12 eyes (4 of 6 crew members) with folds and progressed with mission duration; these folds extended into the fovea in 6 eyes. Circumpapillary choroidal folds developed predominantly superior, nasal, and inferior to the optic nerve head and increased in prevalence and severity with mission duration. Conclusions and Relevance: Choroidal folds were the most common fold type to develop during spaceflight; this differs from reports in idiopathic intracranial hypertension, suggesting differences in the mechanisms underlying fold formation. Quantitative measures demonstrate the development and progression of choroidal folds during weightlessness, and these metrics may help to assess the efficacy of spaceflight-associated neuro-ocular syndrome countermeasures.


Assuntos
Doenças da Coroide , Hipertensão Intracraniana , Doenças Retinianas , Voo Espacial , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Pressão Intracraniana/fisiologia , Estudos Retrospectivos , Incidência , Hipertensão Intracraniana/complicações , Doenças da Coroide/diagnóstico , Doenças da Coroide/epidemiologia , Doenças da Coroide/etiologia , Doenças Retinianas/diagnóstico , Doenças Retinianas/epidemiologia , Doenças Retinianas/etiologia
9.
Sci Rep ; 12(1): 20847, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522361

RESUMO

Long-duration spaceflight impacts human physiology, including well documented immune system dysregulation. The space food system has the potential to serve as a countermeasure to maladaptive physiological changes during spaceflight. However, the relationship between dietary requirements, the food system, and spaceflight adaptation requires further investigation to adequately define countermeasures and prioritize resources on future spaceflight missions. We evaluated the impact of an enhanced spaceflight diet, with increased quantity and variety of fruits, vegetables, fish, and other foods rich in flavonoids and omega-3 fatty acids, compared to a standard spaceflight diet on multiple health and performance outcomes in 16 subjects over four 45-day closed chamber missions in the NASA Human Exploration Research Analog (HERA). Subjects consuming the enhanced spaceflight diet had lower cholesterol levels, lower stress (i.e. cortisol levels), better cognitive speed, accuracy, and attention, and a more stable microbiome and metatranscriptome than subjects consuming the standard diet. Although no substantial changes were observed in the immune response, there were also no immune challenges, such as illness or infection, so the full benefits of the diet may not have been apparent in these analog missions. These results indicate that a spaceflight diet rich in fruits, vegetables, and omega-3 fatty acids produces significant health and performance benefits even over short durations. Further investigation is required to fully develop dietary countermeasures to physiological decrements observed during spaceflight. These results will have implications for food resource prioritization on spaceflight missions.


Assuntos
Ácidos Graxos Ômega-3 , Microbioma Gastrointestinal , Voo Espacial , Animais , Humanos , Dieta , Cognição , Imunidade
10.
JAMA Ophthalmol ; 140(12): 1193-1200, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301519

RESUMO

Importance: Approximately 70% of crew members who complete long-duration missions to the International Space Station develop signs of optic disc edema, a hallmark finding of spaceflight-associated neuro-ocular syndrome. The onset and magnitude of edema differ across individuals, and the reason for this variability remains unknown. Identifying risk factors for spaceflight-induced disc edema is important because this condition may become more severe during extended-duration missions to the moon and Mars and could be associated with irreversible vision loss. Objective: To assess whether preflight indicators of crowded optic nerve head morphology, other ocular measures (such as choroid thickness and axial length), body weight, body mass index, sex, age, and previous flight experience are associated with optic disc edema development. Design, Setting, and Participants: This cohort study analyzed ocular, body weight, and demographic data collected from 31 US and international crew members before, during, and after spaceflight at the NASA Johnson Space Center and International Space Station. Ocular factors assessed included preflight and in-flight peripapillary total retinal thickness, minimum rim width, optic cup volume, mean cup depth, mean cup width, cup-disc ratio, Bruch membrane opening area, retinal nerve fiber layer thickness, choroid thickness, axial length, and refractive error. In addition, body weight, body mass index, sex, age, and previous spaceflight experience were assessed for associations with optic disc edema development. The data were analyzed from August 2021 to June 2022. Exposure: Approximately 6 to 12 months of spaceflight. Main Outcomes and Measures: In-flight increases in peripapillary total retinal thickness. Linear mixed models were used to assess for associations between a wide range of risk factors and in-flight increases in peripapillary total retinal thickness, which is a sensitive objective measure for detecting optic disc edema. Results: This study included 31 International Space Station crew members with a mean (SD) age of 46.9 (6.0) years (25 men [80.6%]). During spaceflight, mean (SE) peripapillary total retinal thickness increased from 392.0 (5.8) µm to 430.2 (9.6) µm (P < .001), and greater individual changes were associated with smaller preflight cup volume (slope [SE], -62.8 [18.9]; P = .002), shallower preflight cup depth (slope [SE], -0.11 [0.03]; P < .001), and narrower preflight cup width (slope [SE], -0.03 [0.01]; P = .03). No associations were observed between changes in peripapillary total retinal thickness and any other variable evaluated. Conclusions and Relevance: Findings of this cohort study suggest that smaller optic cup morphology may be associated with optic disc edema development during spaceflight. Crew members with this cup profile may benefit from enhanced ophthalmic monitoring during spaceflight and use of countermeasures against spaceflight-associated neuro-ocular syndrome.


Assuntos
Papiledema , Voo Espacial , Masculino , Humanos , Pessoa de Meia-Idade , Papiledema/diagnóstico , Papiledema/etiologia , Estudos de Coortes , Edema , Peso Corporal
11.
NPJ Microgravity ; 7(1): 38, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650071

RESUMO

The Spaceflight Associated Neuro-ocular Syndrome (SANS), associated with the headward fluid shifts incurred in microgravity during long-duration missions, remains a high-priority health and performance risk for human space exploration. To help characterize the pathophysiology of SANS, NASA's VESsel GENeration Analysis (VESGEN) software was used to map and quantify vascular adaptations in the retina before and after 70 days of bed rest at 6-degree Head-Down Tilt (HDT), a well-studied microgravity analog. Results were compared to the retinal vascular response of astronauts following 6-month missions to the International Space Station (ISS). By mixed effects modeling, the trends of vascular response were opposite. Vascular density decreased significantly in the 16 retinas of eight astronauts and in contrast, increased slightly in the ten retinas of five subjects after HDT (although with limited significance). The one astronaut retina diagnosed with SANS displayed the greatest vascular loss. Results suggest that microgravity is a major variable in the retinal mediation of fluid shifts that is not reproduced in this HDT bed rest model.

12.
J Appl Physiol (1985) ; 130(6): 1766-1777, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33856253

RESUMO

Head-to-foot gravitationally induced hydrostatic pressure gradients in the upright posture on Earth are absent in weightlessness. This results in a relative headward fluid shift in the vascular and cerebrospinal fluid compartments and may underlie multiple physiological consequences of spaceflight, including the spaceflight-associated neuro-ocular syndrome. Here, we tested three mechanical countermeasures [lower body negative pressure (LBNP), venoconstrictive thigh cuffs (VTC), and impedance threshold device (ITD) resistive inspiratory breathing] individually and in combination to reduce a posture-induced headward fluid shift as a ground-based spaceflight analog. Ten healthy subjects (5 male) underwent baseline measures (seated and supine postures) followed by countermeasure exposure in the supine posture. Noninvasive measurements included ultrasound [internal jugular veins (IJV) cross-sectional area, cardiac stroke volume, optic nerve sheath diameter, noninvasive IJV pressure], transient evoked otoacoustic emissions (OAE; intracranial pressure index), intraocular pressure, choroidal thickness from optical coherence tomography imaging, and brachial blood pressure. Compared with the supine posture, IJV area decreased 48% with application of LBNP [mean ratio: 0.52, 95% confidence interval (CI): 0.44-0.60, P < 0.001], 31% with VTC (mean ratio: 0.69, 95% CI: 0.55-0.87, P < 0.001), and 56% with ITD (mean ratio: 0.44, 95% CI: 0.12-1.70, P = 0.46), measured at end-inspiration. LBNP was the only individual countermeasure to decrease the OAE phase angle (Δ -12.9 degrees, 95% CI: -25 to -0.9, P = 0.027), and use of combined countermeasures did not result in greater effects. Thus, LBNP, and to a lesser extent VTC and ITD, represents promising headward fluid shift countermeasures but will require future testing in analog and spaceflight environments.NEW & NOTEWORTHY As a weightlessness-induced headward fluid shift is hypothesized to be a primary factor underlying several physiological consequences of spaceflight, countermeasures aimed at reversing the fluid shift will likely be crucial during exploration-class spaceflight missions. Here, we tested three mechanical countermeasures individually and in various combinations to reduce a posture-induced headward fluid shift as a ground-based spaceflight analog.


Assuntos
Voo Espacial , Ausência de Peso , Deslocamentos de Líquidos Corporais , Humanos , Pressão Intracraniana , Pressão Negativa da Região Corporal Inferior , Masculino , Ausência de Peso/efeitos adversos
13.
Life Sci Space Res (Amst) ; 28: 22-25, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33612176

RESUMO

Foods packaged for future deep-space exploration missions may be prepositioned ahead of astronaut arrival and will be exposed to galactic cosmic rays (GCRs) and solar radiation in deep space at higher levels and different spectrums than those found in low-Earth orbit (LEO). In this study, we have evaluated the impact of a GCR simulation (approximately 0.5 and 5 Gy doses) at the NASA Space Radiation Laboratory (NSRL) on two retort thermostabilized food products that are good sources of radiation labile nutrients (thiamin, vitamin E, or unsaturated fats). No trends or nutritional differences were found between the radiation-treated samples and the control immediately after treatment or one-year after treatment. Small changes in a few nutrients were measured following one-year of storage. Further studies may be needed to confirm these results, as the foods in this study were heterogeneous, and this may have masked meaningful changes due to pouch-to-pouch variations.


Assuntos
Radiação Cósmica , Alimentos/efeitos da radiação , Gorduras Insaturadas/efeitos da radiação , Análise de Alimentos , Inocuidade dos Alimentos , Armazenamento de Alimentos , Voo Espacial , Tiamina/efeitos da radiação , Vitamina E/efeitos da radiação
14.
Front Physiol ; 12: 782167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975535

RESUMO

Introduction: The ventilatory threshold (named as VT1) and the respiratory compensation point (named as VT2) describe prominent changes of metabolic demand and exercise intensity domains during an incremental exercise test. Methods: A novel computerized method based on the optimization method was developed for automatically determining VT1 and VT2 from expired air during a progressive maximal exercise test. A total of 109 peak cycle tests were performed by members of the US astronaut corps (74 males and 35 females). We compared the automatically determined VT1 and VT2 values against the visual subjective and independent analyses of three trained evaluators. We also characterized VT1 and VT2 and the respective absolute and relative work rates and distinguished differences between sexes. Results: The automated compared to the visual subjective values were analyzed for differences with t test, for agreement with Bland-Altman plots, and for equivalence with a two one-sided test approach. The results showed that the automated and visual subjective methods were statistically equivalent, and the proposed approach reliably determined VT1 and VT2 values. Females had lower absolute O2 uptake, work rate, and ventilation, and relative O2 uptake at VT1 and VT2 compared to men (p ≤ 0.04). VT1 and VT2 occurred at a greater relative percentage of their peak VO2 for females (67 and 88%) compared to males (55 and 74%; main effect for sex: p < 0.001). Overall, VT1 occurred at 58% of peak VO2, and VT2 occurred at 79% of peak VO2 (p < 0.0001). Conclusion: Improvements in determining of VT1 and VT2 by automated analysis are time efficient, valid, and comparable to subjective visual analysis and may provide valuable information in research and clinical practice as well as identifying exercise intensity domains of crewmembers in space.

15.
Invest Ophthalmol Vis Sci ; 61(14): 34, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33372980

RESUMO

Purpose: Ocular structural and functional changes, collectively termed spaceflight-associated neuro-ocular syndrome (SANS), have been described in astronauts undergoing long-duration missions in the microgravity environment of the International Space Station. We tested the hypothesis that retinal vascular remodeling, particularly by smaller vessels, mediates the chronic headward fluid shifts associated with SANS. Methods: As a retrospective study, arterial and venous patterns extracted from 30° infrared Heidelberg Spectralis retinal images of eight crew members acquired before and after six-month missions were analyzed with NASA's recently released VESsel GENeration Analysis (VESGEN) software. Output parameters included the fractal dimension and overall vessel length density that was further classified into large and small vascular branching generations. Vascular results were compared with SANS-associated clinical ocular measures. Results: Significant postflight decreases in Df, Lv, and in smaller but not larger vessels were quantified in 11 of 16 retinas for arteries and veins (P value for Df, Lv, and smaller vessels in all 16 retinas were ≤0.033). The greatest vascular decreases occurred in the only retina displaying clinical evidence of SANS by choroidal folds and optic disc edema. In the remaining 15 retinas, decreases in vascular density from Df and Lv ranged from minimal to high by a custom Subclinical Vascular Pathology Index. Conclusions: Together with VESGEN, the Subclinical Vascular Pathology Index may represent a new, useful SANS biomarker for advancing the understanding of SANS etiology and developing successful countermeasures for long duration space exploration in microgravity, although further research is required to better characterize retinal microvascular adaptations.


Assuntos
Astronautas , Doenças Retinianas/etiologia , Vasos Retinianos/patologia , Voo Espacial , Remodelação Vascular , Ausência de Peso/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Retiniana/diagnóstico por imagem , Artéria Retiniana/patologia , Doenças Retinianas/patologia , Veia Retiniana/diagnóstico por imagem , Veia Retiniana/patologia , Vasos Retinianos/diagnóstico por imagem , Estudos Retrospectivos , Astronave
16.
Aerosp Med Hum Perform ; 91(12): 923-931, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33243335

RESUMO

BACKGROUND: NASA has been making efforts to assess the carbon dioxide (CO2) washout capability of spacesuits using a standard CO2 sampling protocol. This study established the methodology for determining the partial pressure of inspired CO2 (PIco2) in a pressurized spacesuit. We applied the methodology to characterize PIco2 for the extravehicular mobility unit (EMU).METHODS: We suggested an automated and mathematical algorithm to find the end-tidal CO2 and the end of inspiration. We provided objective and standardized guidelines to identify acceptable breath traces, which are essential to accurate and reproducible calculation of the in-suit inhaled and exhaled partial pressure of CO2 (Pco2). The mouth guard-based method for measurement of inhaled and exhaled dry-gas Pco2 was described. We calculated all individual concentrations of PIco2 inhaled by 19 healthy subjects classified into 3 fitness groups. The transcutaneous Pco2 was monitored as a secondary measure to validate washout performance.RESULTS: Mean and standard deviation values for the data collection performance and the CO2 metrics were presented (e.g., minimum time weighted average Pco2 at suited workloads of resting, 1000, 2000, and 3000 (BTU h1) were 4.75 1.03, 8.09 1.39, 11.39 1.26, and 14.36 1.29 (mmHg s1). All CO2 metrics had a statistically significant association and all positive slopes with increasing metabolic rate. No significant differences in CO2 metrics were found between the three fitness groups.DISCUSSION: A standardized and automated methodology to calculate PIco2 exposure level is presented and applied to characterize CO2 washout in the EMU. The EMU has been operated successfully in over 400 extravehicular activities (EVAs) and is considered to provide acceptable CO2 washout performance. Results provide a basis for establishing verifiable Pco2 requirements for current and future EVA spacesuits.Kim KJ, Bekdash OS, Norcross JR, Conkin J, Garbino A, Fricker J, Young M, Abercromby AFJ. The partial pressure of inspired carbon dioxide exposure levels in the extravehicular mobility unit. Aerosp Med Hum Perform. 2020; 91(12):923931.


Assuntos
Dióxido de Carbono , Trajes Espaciais , Atividade Extraespaçonave , Humanos , Pressão Parcial
17.
Sci Rep ; 10(1): 15594, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973159

RESUMO

Lunar habitation and exploration of space beyond low-Earth orbit will require small crews to live in isolation and confinement while maintaining a high level of performance with limited support from mission control. Astronauts only achieve approximately 6 h of sleep per night, but few studies have linked sleep deficiency in space to performance impairment. We studied crewmembers over 45 days during a simulated space mission that included 5 h of sleep opportunity on weekdays and 8 h of sleep on weekends to characterize changes in performance on the psychomotor vigilance task (PVT) and subjective fatigue ratings. We further evaluated how well bio-mathematical models designed to predict performance changes due to sleep loss compared to objective performance. We studied 20 individuals during five missions and found that objective performance, but not subjective fatigue, declined from the beginning to the end of the mission. We found that bio-mathematical models were able to predict average changes across the mission but were less sensitive at predicting individual-level performance. Our findings suggest that sleep should be prioritized in lunar crews to minimize the potential for performance errors. Bio-mathematical models may be useful for aiding crews in schedule design but not for individual-level fitness-for-duty decisions.


Assuntos
Fadiga , Modelos Teóricos , Desempenho Psicomotor , Privação do Sono/fisiopatologia , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Simulação de Ambiente Espacial , Adulto , Astronautas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Voo Espacial , Vigília , Tolerância ao Trabalho Programado
18.
Aerosp Med Hum Perform ; 91(5): 432-439, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327017

RESUMO

BACKGROUND: Whether the unique environment of space affects astronaut risk of venous thromboembolism (VTE) is not known. On Earth, it is known that use of combined oral contraceptives (COCs) doubles the risk of VTE. Since some female astronauts choose to use COCs, this retrospective study examined known risk factors associated with VTE risk to determine whether the available data suggested elevated VTE risk in female astronauts.METHODS: Longitudinal health data were requested for female astronauts who flew short and long duration missions between 2000 and 2014. Pre- and postflight hematological and biochemical blood markers were available and evaluated. Astronauts' postflight measurements were compared to clinically relevant terrestrial high risk levels to determine any trend toward increased risk for VTE following spaceflight. Secondarily, a comparison of pre- and postflight changes was made, as well as an assessment of COC impact.RESULTS: A total of 38 astronaut-flights were included in this study and no VTE events were found. Analysis of potential VTE risk factors showed no evidence suggesting elevated VTE risk in female astronauts associated with spaceflight, regardless of contraceptive use.DISCUSSION: Arguably, all astronauts encounter many physiological stressors during spaceflight missions, but women using the combined contraceptive pill add a known risk factor for VTE. The risk factors analyzed within this study showed no trend toward an increased risk of VTE for female astronauts. This study provides an evidence base supporting the safety of COC use by female astronauts and also reinforces the importance of healthy lifestyle on VTE risk reduction.Jain V, Ploutz-Snyder R, Young M, Charvat JM, Wotring VE. Potential venous thromboembolism risk in female astronauts. Aerosp Med Hum Perform. 2020; 91(5):432-439.


Assuntos
Astronautas , Anticoncepcionais Orais Combinados/efeitos adversos , Voo Espacial , Tromboembolia Venosa/induzido quimicamente , Tromboembolia Venosa/epidemiologia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Ausência de Peso
19.
J Physiol ; 598(12): 2491-2505, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196672

RESUMO

KEY POINTS: Carbon dioxide levels are mildly elevated on the International Space Station and it is unknown whether this chronic exposure causes physiological changes to astronauts. We combined ∼4 mmHg ambient PCO2 with the strict head-down tilt bed rest model of spaceflight and this led to the development of optic disc oedema in one-half of the subjects. We demonstrate no change in arterialized PCO2 , cerebrovascular reactivity to CO2 or the hypercapnic ventilatory response. Our data suggest that the mild hypercapnic environment does not contribute to the development of spaceflight associated neuro-ocular syndrome. ABSTRACT: Chronically elevated carbon dioxide (CO2 ) levels can occur in confined spaces such as the International Space Station. Using the spaceflight analogue 30 days of strict 6° head-down tilt bed rest (HDTBR) in a mild hypercapnic environment ( PCO2 = ∼4 mmHg), we investigated arterialized PCO2 , cerebrovascular reactivity and the hypercapnic ventilatory response in 11 healthy subjects (five females) before, on days 1, 9, 15 and 30 of bed rest (BR), and 6 and 13 days after HDTBR. During all HDTBR time points, arterialized PCO2 was not significantly different from the pre-HDTBR measured in the 6° HDT posture, with a mean (95% confidence interval) increase of 1.2 mmHg (-0.2 to 2.5 mmHg, P = 0.122) on day 30 of HDTBR. Respiratory acidosis was never detected, although a mild metabolic alkalosis developed on day 30 of HDTBR by a mean (95% confidence interval) pH change of 0.032 (0.022-0.043; P < 0.001), which remained elevated by 0.021 (0.011-0.031; P < 0.001) 6 days after HDTBR. Arterialized pH returned to pre-HDTBR levels 13 days after BR with a change of -0.001 (-0.009 to 0.007; P = 0.991). Compared to pre-HDTBR, cerebrovascular reactivity during and after HDTBR did not change. Baseline ventilation, ventilatory recruitment threshold and the slope of the ventilatory response were similar between pre-HDTBR and all other time points. Taken together, these data suggest that the mildly increased ambient PCO2 combined with 30 days of strict 6° HDTBR did not change arterialized PCO2 levels. Therefore, the experimental conditions were not sufficient to elicit a detectable physiological response.


Assuntos
Dióxido de Carbono , Decúbito Inclinado com Rebaixamento da Cabeça , Astronautas , Repouso em Cama/efeitos adversos , Feminino , Humanos , Hipercapnia
20.
Physiol Behav ; 219: 112829, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32068108

RESUMO

Strategies that reduce food system mass without negatively impacting food intake, acceptability, and resulting astronaut health and performance are essential for mission success in extreme operational environments such as space exploration. Here, we report the impact of substituting the spaceflight standard breakfast with energy equivalent, calorically-dense meal replacement bars (MRBs) on consumption, acceptability, and satiety and on associations with physical and behavioral health outcomes in high-performing subjects completing 30-day missions in the isolated and confined operational environment of NASA's Human Exploration Research Analog (HERA) habitat. MRB implementation was associated with reduced daily caloric intake, weight loss, and decrements in mood and neurobehavioral functioning, with no significant impacts on somatic symptoms and physical functioning. Food acceptability ratings suggest that flavor, texture, and menu fatigue attributed to limited variety are contributing factors, which are exacerbated by a daily implementation schedule. Meal replacement strategies for short-duration missions are operationally feasible, moderately acceptable, and can contribute to the practical goal of mass reduction, but more work is needed to define and optimize flavors, variety, and implementation schedules that sustain adequate nutrition, physical and behavioral health, and operational performance over time in isolated, confined, and extreme mission environments.


Assuntos
Astronautas , Voo Espacial , Desjejum , Ingestão de Alimentos , Ingestão de Energia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...