Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746440

RESUMO

In Africa, the first Plasmodium falciparum Kelch13 (K13) artemisinin partial resistance mutation 561H was first detected and validated in Rwanda. Surveillance to better define the extent of the emergence in Rwanda and neighboring countries as other mutations arise in East Africa is critical. We employ a novel scheme of liquid blood drop preservation combined with pooled sequencing to provide a cost-effective rapid assessment of resistance mutation frequencies at multiple collection sites across Rwanda and neighboring countries. Malaria-positive samples (n=5,465) were collected from 39 health facilities in Rwanda, Uganda, Tanzania, and the Democratic Republic of the Congo (DRC) between May 2022 and March 2023 and sequenced in 199 pools. In Rwanda, K13 561H and 675V were detected in 90% and 65% of sites with an average frequency of 19.0% (0-54.5%) and 5.0% (0-35.5%), respectively. In Tanzania, 561H had high frequency in multiple sites while it was absent from the DRC although 675V was seen at low frequency. Conceringly candidate mutations were observed: 441L, 449A, and 469F co-occurred with validated mutations suggesting they are arising under the same pressures. Other resistance markers associated with artemether-lumefantrine are common: P. falciparum multidrug resistance protein 1 N86 at 98.0% and 184F at 47.0% (0-94.3%) and P. falciparum chloroquine resistance transporter 76T at 14.7% (0-58.6%). Additionally, sulfadoxine-pyrimethamine-associated mutations show high frequencies. Overall, K13 mutations are rapidly expanding in the region further endangering control efforts with the potential of engendering partner drug resistance.

2.
Malar J ; 23(1): 150, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755607

RESUMO

BACKGROUND: Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed. METHODS: Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. RESULTS: Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. CONCLUSIONS: Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Mutação , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Artemisininas/farmacologia , Antimaláricos/farmacologia , Proteínas de Protozoários/genética , Resistência a Medicamentos/genética , Ruanda , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Humanos , Antígenos de Protozoários/genética , Prevalência , Criança , Adulto Jovem , Adolescente , Adulto , Pré-Escolar
3.
medRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38196592

RESUMO

Background: Emerging artemisinin resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (K13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. K13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015 but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, we sought to assess recent K13-561H prevalence changes, as well as for other key mutations. Prevalence of hrp2/3 deletions was also assessed. Methods: We genotyped samples collected in Rukara in 2021 for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. Results: Clinically validated K13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of artemisinin resistance mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of K13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other antimalarials were variable, with high levels of multidrug resistance 1 (MDR1) N86 (95.5%) associated with lumefantrine resistance and dihydrofolate reductase (DHFR) 164L (24.7%) associated with antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (CRT ) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. Conclusions: Increasing prevalence of artemisinin partial resistance due to K13-561H and the rapid expansion of K13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative mRDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA