Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Algal Res ; 56: None, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34084707

RESUMO

The application of microfluidic technologies to microalgal research is particularly appealing since these approaches allow the precise control of the extracellular environment and offer a high-throughput approach to studying dynamic cellular processes. To expand the portfolio of applications, here we present a droplet-based microfluidic method for analysis and screening of Phaeodactylum tricornutum and Nannochloropsis gaditana, which can be integrated into a genetic transformation workflow. Following encapsulation of single cells in picolitre-sized droplets, fluorescence signals arising from each cell can be used to assess its phenotypic state. In this work, the chlorophyll fluorescence intensity of each cell was quantified and used to identify populations of P. tricornutum cells grown in different light conditions. Further, individual P. tricornutum or N. gaditana cells engineered to express green fluorescent protein were distinguished and sorted from wild-type cells. This has been exploited as a rapid screen for transformed cells within a population, bypassing a major bottleneck in algal transformation workflows and offering an alternative strategy for the identification of genetically modified strains.

2.
Methods Mol Biol ; 2317: 293-304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028777

RESUMO

The availability of routine methods for the genetic engineering of the chloroplast genome of Chlamydomonas reinhardtii is allowing researchers to explore the use of this microalga as a phototrophic cell platform for synthesis of high value recombinant proteins and metabolites. However, the established method for delivering transforming DNA into the algal chloroplast involves microparticle bombardment using an expensive "gene gun". Furthermore, selection of transformant lines most commonly involves the use of a bacterial antibiotic resistance gene. In this chapter, we describe a simple and cheap delivery method in which cell-DNA suspensions are agitated with glass beads: a method that is more commonly used for nuclear transformation of Chlamydomonas. We also describe the use of plasmid expression vectors that target transgenes to a neutral site within the chloroplast genome between psbH and trnE2, and employ psbH as the selectable marker-thereby avoiding issues of unwanted antibiotic resistance genes in the resulting transgenic lines. Finally, we highlight a feature in our latest vectors in which the presence of a novel tRNA gene on the plasmid results in recognition within the chloroplast of UGA stop codons in transgenes as tryptophan codons. This feature simplifies the cloning of transgenes that are normally toxic to E. coli, serves as a biocontainment strategy restricting the functional escape of transgenes from the algal chloroplast to environmental microorganisms, and offers a simple system of temperature-regulated translation of transgenes.


Assuntos
Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Engenharia Genética/métodos , Plantas Geneticamente Modificadas/genética , Transformação Genética , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Vetores Genéticos , Genoma de Cloroplastos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Transgenes
3.
Metab Eng ; 63: 81-101, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301873

RESUMO

Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.


Assuntos
Redes e Vias Metabólicas , Biologia Sintética , Vias Biossintéticas , Sistema Livre de Células , DNA , Engenharia Metabólica , Redes e Vias Metabólicas/genética
4.
Appl Microbiol Biotechnol ; 104(2): 675-686, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31788712

RESUMO

Edible microalgae have potential as low-cost cell factories for the production and oral delivery of recombinant proteins such as vaccines, anti-bacterials and gut-active enzymes that are beneficial to farmed animals including livestock, poultry and fish. However, a major economic and technical problem associated with large-scale cultivation of microalgae, even in closed photobioreactors, is invasion by contaminating microorganisms. Avoiding this requires costly media sterilisation, aseptic techniques during set-up and implementation of 'crop-protection' strategies during cultivation. Here, we report a strain improvement approach in which the chloroplast of Chlamydomonas reinhardtii is engineered to allow oxidation of phosphite to its bio-available form: phosphate. We have designed a synthetic version of the bacterial gene (ptxD)-encoding phosphite oxidoreductase such that it is highly expressed in the chloroplast but has a Trp→Opal codon reassignment for bio-containment of the transgene. Under mixotrophic conditions, the growth rate of the engineered alga is unaffected when phosphate is replaced with phosphite in the medium. Furthermore, under non-sterile conditions, growth of contaminating microorganisms is severely impeded in phosphite medium. This, therefore, offers the possibility of producing algal biomass under non-sterile conditions. The ptxD gene can also serve as a dominant marker for genetic engineering of any C. reinhardtii strain, thereby avoiding the use of antibiotic resistance genes as markers and allowing the 'retro-fitting' of existing engineered strains. As a proof of concept, we demonstrate the application of our ptxD technology to a strain expressing a subunit vaccine targeting a major viral pathogen of farmed fish.


Assuntos
Biotecnologia/métodos , Chlamydomonas reinhardtii/enzimologia , Cloroplastos/enzimologia , Oxirredutases/metabolismo , Fosfatos/metabolismo , Fosfitos/metabolismo , Proteínas Recombinantes/metabolismo , Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Meios de Cultura/química , Descontaminação/métodos , Engenharia Metabólica/métodos , Oxirredutases/genética , Proteínas Recombinantes/genética
5.
Microb Cell Fact ; 17(1): 186, 2018 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-30474564

RESUMO

BACKGROUND: The chloroplast of eukaryotic microalgae such as Chlamydomonas reinhardtii is a potential platform for metabolic engineering and the production of recombinant proteins. In industrial biotechnology, inducible expression is often used so that the translation or function of the heterologous protein does not interfere with biomass accumulation during the growth stage. However, the existing systems used in bacterial or fungal platforms do not transfer well to the microalgal chloroplast. We sought to develop a simple inducible expression system for the microalgal chloroplast, exploiting an unused stop codon (TGA) in the plastid genome. We have previously shown that this codon can be translated as tryptophan when we introduce into the chloroplast genome a trnWUCA gene encoding a plastidial transfer RNA with a modified anticodon sequence, UCA. RESULTS: A mutated version of our trnWUCA gene was developed that encodes a temperature-sensitive variant of the tRNA. This allows transgenes that have been modified to contain one or more internal TGA codons to be translated differentially according to the culture temperature, with a gradient of recombinant protein accumulation from 35 °C (low/off) to 15 °C (high). We have named this the CITRIC system, an acronym for cold-inducible translational readthrough in chloroplasts. The exact induction behaviour can be tailored by altering the number of TGA codons within the transgene. CONCLUSIONS: CITRIC adds to the suite of genetic engineering tools available for the microalgal chloroplast, allowing a greater degree of control over the timing of heterologous protein expression. It could also be used as a heat-repressible system for studying the function of essential native genes in the chloroplast. The genetic components of CITRIC are entirely plastid-based, so no engineering of the nuclear genome is required.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Temperatura Baixa , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Proteínas de Algas/metabolismo , Sequência de Bases , Chlamydomonas reinhardtii/genética , Códon/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas/genética , Transgenes
6.
Appl Microbiol Biotechnol ; 100(12): 5467-77, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26887319

RESUMO

In recent years, there has been an increasing interest in the exploitation of microalgae in industrial biotechnology. Potentially, these phototrophic eukaryotes could be used for the low-cost synthesis of valuable recombinant products such as bioactive metabolites and therapeutic proteins. The algal chloroplast in particular represents an attractive target for such genetic engineering, both because it houses major metabolic pathways and because foreign genes can be targeted to specific loci within the chloroplast genome, resulting in high-level, stable expression. However, routine methods for chloroplast genetic engineering are currently available only for one species-Chlamydomonas reinhardtii-and even here, there are limitations to the existing technology, including the need for an expensive biolistic device for DNA delivery, the lack of robust expression vectors, and the undesirable use of antibiotic resistance markers. Here, we describe a new strain and vectors for targeted insertion of transgenes into a neutral chloroplast locus that (i) allow scar-less fusion of a transgenic coding sequence to the promoter/5'UTR element of the highly expressed endogenous genes psaA or atpA, (ii) employ the endogenous gene psbH as an effective but benign selectable marker, and (iii) ensure the successful integration of the transgene construct in all transformant lines. Transformation is achieved by a simple and cheap method of agitation of a DNA/cell suspension with glass beads, with selection based on the phototrophic rescue of a cell wall-deficient ΔpsbH strain. We demonstrate the utility of these tools in the creation of a transgenic line that produces high levels of functional human growth hormone.


Assuntos
Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Engenharia Genética/métodos , Hormônio do Crescimento Humano/biossíntese , Hormônio do Crescimento Humano/genética , Transgenes , Chlamydomonas reinhardtii/metabolismo , Vetores Genéticos , Humanos , Regiões Promotoras Genéticas , Transformação Genética
7.
Plant Biotechnol J ; 14(5): 1251-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26471875

RESUMO

There is a growing interest in the use of microalgae as low-cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein-coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome-binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co-introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae.


Assuntos
Chlamydomonas reinhardtii/genética , Códon/genética , Engenharia Genética , Cloroplastos/genética , Contenção de Riscos Biológicos , Escherichia coli/genética
8.
Plant J ; 80(5): 915-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234691

RESUMO

Negative selectable markers are useful tools for forward-genetic screens aimed at identifying trans-acting factors that are required for expression of specific genes. Transgenic lines harbouring the marker fused to a gene element, such as a promoter, may be mutagenized to isolate loss-of-function mutants able to survive under selection. Such a strategy allows the molecular dissection of factors that are essential for expression of the gene. Expression of individual chloroplast genes in plants and algae typically requires one or more nuclear-encoded factors that act at the post-transcriptional level, often through interaction with the 5' UTR of the mRNA. To study such nuclear control further, we have developed the Escherichia coli cytosine deaminase gene codA as a conditional negative selectable marker for use in the model green alga Chlamydomonas reinhardtii. We show that a codon-optimized variant of codA with three amino acid substitutions confers sensitivity to 5-fluorocytosine (5-FC) when expressed in the chloroplast under the control of endogenous promoter/5' UTR elements from the photosynthetic genes psaA or petA. UV mutagenesis of the psaA transgenic line allowed recovery of 5-FC-resistant, photosynthetically deficient lines harbouring mutations in the nuclear gene for the factor TAA1 that is required for psaA translation. Similarly, the petA line was used to isolate mutants of the petA mRNA stability factor MCA1 and the translation factor TCA1. The codA marker may be used to identify critical residues in known nuclear factors and to aid the discovery of additional factors required for expression of chloroplast genes.


Assuntos
Chlamydomonas reinhardtii/genética , Citosina Desaminase/genética , Proteínas de Escherichia coli/genética , Genes de Cloroplastos , Mutação , Regiões 5' não Traduzidas , Biomarcadores/análise , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/efeitos da radiação , Flucitosina/farmacologia , Regulação da Expressão Gênica de Plantas , Mutagênese , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Raios Ultravioleta
9.
Int J Med Microbiol ; 303(8): 603-17, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24035104

RESUMO

Lipopolysaccharide O-antigens are the basis of serotyping schemes for Gram negative bacteria and help to determine the nature of host-bacterial interactions. Haemophilus parainfluenzae is a normal commensal of humans but is also an occasional pathogen. The prevalence, diversity and biosynthesis of O-antigens were investigated in this species for the first time. 18/18 commensal H. parainfluenzae isolates contain a O-antigen biosynthesis gene cluster flanked by glnA and pepB, the same position as the hmg locus for tetrasaccharide biosynthesis in Haemophilus influenzae. The O-antigen loci show diverse restriction digest patterns but fall into two main groups: (1) those encoding enzymes for the synthesis and transfer of FucNAc4N in addition to the Wzy-dependent mechanism of O-antigen synthesis and transport and (2) those encoding galactofuranose synthesis/transfer enzymes and an ABC transporter. The other glycosyltransferase genes differ between isolates. Three H. parainfluenzae isolates fell outside these groups and are predicted to synthesise O-antigens containing ribitol phosphate or deoxytalose. Isolates using the ABC transporter system encode a putative O-antigen ligase, required for the synthesis of O-antigen-containing LPS glycoforms, at a separate genomic location. The presence of an O-antigen contributes significantly to H. parainfluenzae resistance to the killing effect of human serum in vitro. The discovery of O-antigens in H. parainfluenzae is striking, as its close relative H. influenzae lacks this cell surface component.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Glicosiltransferases/metabolismo , Haemophilus parainfluenzae/metabolismo , Lipopolissacarídeos/metabolismo , Antígenos O/metabolismo , Vias Biossintéticas/genética , Criança , DNA Bacteriano/química , DNA Bacteriano/genética , Genes Bacterianos , Haemophilus parainfluenzae/genética , Haemophilus parainfluenzae/isolamento & purificação , Humanos , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA
10.
Glycoconj J ; 30(6): 561-76, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23093380

RESUMO

Cell surface lipopolysaccharide (LPS) is a well characterized virulence determinant for the human pathogen Haemophilus influenzae, so an investigation of LPS in the less pathogenic Haemophilus parainfluenzae could yield important insights. Using a panel of 18 commensal H. parainfluenzae isolates we demonstrate that the set of genes for inner core LPS biosynthesis largely resembles that of H. influenzae, with an additional heptosyltransferase I gene similar to waaC from Pasteurella multocida. Inner core LPS structure is therefore likely to be largely conserved across the two Haemophilus species. Outer core LPS biosynthetic genes are much less prevalent in H. parainfluenzae, although homologues of the H. influenzae LPS genes lpsB, non-phase variable lic2A and lgtC, and losA1, losB1 and lic2C are found in certain isolates. Immunoblotting using antibodies directed against selected LPS epitopes was consistent with these data. We found no evidence for tetranucleotide repeat-mediated phase variation in H. parainfluenzae. Phosphocholine, a phase variable H. influenzae LPS epitope that has been implicated in disease, was absent in H. parainfluenzae LPS as were the respective (lic1) biosynthetic genes. The introduction of the lic1 genes into H. parainfluenzae led to the phase variable incorporation of phosphocholine into its LPS. Differences in LPS structure between Haemophilus species could affect interactions at the bacterial-host interface and therefore the pathogenic potential of these bacteria.


Assuntos
Haemophilus parainfluenzae/metabolismo , Lipopolissacarídeos/biossíntese , Repetições de Microssatélites , Sequência de Aminoácidos , Epitopos/química , Epitopos/genética , Genes Bacterianos , Haemophilus parainfluenzae/química , Haemophilus parainfluenzae/genética , Lipopolissacarídeos/química , Lipopolissacarídeos/genética , Dados de Sequência Molecular
11.
Carbohydr Res ; 346(14): 2228-36, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21840514

RESUMO

Haemophilus parainfluenzae is a Gram-negative bacterium that colonizes the upper respiratory tract of humans and is a part of normal flora. In this study, we investigated the lipopolysaccharide (LPS) expressed by H. parainfluenzae strain 20. Using NMR and MS techniques on LPS, oligosaccharide samples and lipid A, the structures for O-antigen, core oligosaccharide and lipid A could be established. It was found that the biological repeating unit of the O-antigen is →4)-α-D-GalpNAc-(1→P→6)-ß-D-Glcp-(1→3)-α-D-FucpNAc4N-(1→, in which D-FucpNAc4N is 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose. This sugar is in ß-configuration when linked to O-4 of the glucose residue of ß-D-Galp-(1→2)-L-α-D-Hepp-(1→2)-[PEtn→6]-L-α-D-Hepp-(1→3)-[ß-D-Glcp-(1→4)]-L-α-D-Hepp-(1→5)-[PPEtn→4]-α-Kdo-(2→6)-lipid A. LPS from a wbaP mutant of H. parainfluenzae strain 20 did not contain an O-antigen, consistent with the wbaP gene product being required for expression of O-antigen in fully extended LPS.


Assuntos
Haemophilus/química , Lipídeo A/química , Antígenos O/química , Sequência de Carboidratos , Criança , Glucose/química , Heptoses/química , Humanos , Lipídeo A/isolamento & purificação , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Antígenos O/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray
12.
PLoS One ; 3(10): e3527, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18953401

RESUMO

Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.


Assuntos
Sequência Conservada , Telômero/genética , Sítio de Iniciação de Transcrição/fisiologia , Trypanosoma brucei brucei/genética , Animais , Variação Antigênica/genética , Linhagem Celular , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica , Inativação Gênica , Interações Hospedeiro-Parasita/genética , Filogenia , Análise de Sequência de DNA , Sitios de Sequências Rotuladas , Trypanosoma brucei brucei/fisiologia
13.
BMC Genomics ; 9: 385, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18700033

RESUMO

BACKGROUND: African trypanosomes (including Trypanosoma brucei) are unicellular parasites which multiply in the mammalian bloodstream. T. brucei has about twenty telomeric bloodstream form Variant Surface Glycoprotein (VSG) expression sites (BESs), of which one is expressed at a time in a mutually exclusive fashion. BESs are polycistronic transcription units, containing a variety of families of expression site associated genes (ESAGs) in addition to the telomeric VSG. These polymorphic ESAG families are thought to play a role in parasite-host adaptation, and it has been proposed that ESAG diversity might be related to host range. Analysis of the genetic diversity of these telomeric gene families has been confounded by the underrepresentation of telomeric sequences in standard libraries. We have previously developed a method to selectively isolate sets of trypanosome BES containing telomeres using Transformation associated recombination (TAR) cloning in yeast. RESULTS: Here we describe the isolation of repertoires of BES containing telomeres from three trypanosome subspecies: Trypanosoma brucei gambiense DAL 972 (causative agent of West-African trypanosomiasis), T. b. brucei EATRO 2340 (a nonhuman infective strain) and T. equiperdum STIB 818 (which causes a sexually transmitted disease in equines). We have sequenced and analysed the genetic diversity at four BES loci (BES promoter region, ESAG6, ESAG5 and ESAG2) from these three trypanosome BES repertoires. CONCLUSION: With the exception of ESAG2, the BES sequence repertoires derived from T. b. gambiense are both less diverse than and nearly reciprocally monophyletic relative to those from T. b. brucei and T. equiperdum. Furthermore, although we find evidence for adaptive evolution in all three ESAG repertoires in T. b. brucei and T. equiperdum, only ESAG2 appears to be under diversifying selection in T. b. gambiense. This low level of variation in the T. b. gambiense BES sequence repertoires is consistent both with the relatively narrow host range of this subspecies and its apparent long-term clonality. However, our data does not show a clear correlation between size of trypanosome host range and either number of BESs or extent of ESAG genetic diversity.


Assuntos
Trypanosoma brucei brucei/genética , Trypanosoma brucei gambiense/genética , Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA de Protozoário/genética , Evolução Molecular , Expressão Gênica , Biblioteca Gênica , Genes de Protozoários , Variação Genética , Dados de Sequência Molecular , Filogenia , Recombinação Genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Telômero/genética
14.
EMBO J ; 26(9): 2400-10, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17431399

RESUMO

African trypanosomes show monoallelic expression of one of about 20 telomeric variant surface glycoprotein (VSG) gene-expression sites (ESs) while multiplying in the mammalian bloodstream. We screened for genes involved in ES silencing using flow cytometry and RNA interference (RNAi). We show that a novel member of the ISWI family of SWI2/SNF2-related chromatin-remodelling proteins (TbISWI) is involved in ES downregulation in Trypanosoma brucei. TbISWI has an atypical protein architecture for an ISWI, as it lacks characteristic SANT domains. Depletion of TbISWI by RNAi leads to 30-60-fold derepression of ESs in bloodstream-form T. brucei, and 10-17-fold derepression in insect form T. brucei. We show that although blocking synthesis of TbISWI leads to derepression of silent VSG ES promoters, this does not lead to fully processive transcription of silent ESs, or an increase in ES-activation rates. VSG ES activation in African trypanosomes therefore appears to be a multistep process, whereby an increase in transcription from a silent ES promoter is necessary but not sufficient for full ES activation.


Assuntos
Adenosina Trifosfatases/fisiologia , Fatores de Transcrição/fisiologia , Trypanosoma brucei brucei/fisiologia , Glicoproteínas Variantes de Superfície de Trypanosoma/fisiologia , Alelos , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Regulação para Baixo , Inativação Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Interferência de RNA , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/biossíntese , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...