Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 443(2): 355-9, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22332634

RESUMO

A recent study revealed that ES (embryonic stem) cell lines derived from the 129 murine strain carry an inactivating mutation within the caspase 11 gene (Casp4) locus [Kayagaki, Warming, Lamkanfi, Vande Walle, Louie, Dong, Newton, Qu, Liu, Heldens, Zhang, Lee, Roose-Girma and Dixit (2011) Nature 479, 117-121]. Thus, if 129 ES cells are used to target genes closely linked to caspase 11, the resulting mice might also carry the caspase 11 deficiency as a passenger mutation. In the present study, we examined the genetic loci of mice targeted for the closely linked c-IAP (cellular inhibitor of apoptosis) genes, which were generated in 129 ES cells, and found that, despite extensive backcrossing into a C57BL/6 background, c-IAP1(-/-) animals are also deficient in caspase 11. Consequently, data obtained from these mice should be re-evaluated in this new context.


Assuntos
Caspases/genética , Proteínas Inibidoras de Apoptose/metabolismo , Mutação , Animais , Caspases/metabolismo , Caspases Iniciadoras , Linhagem Celular , Ativação Enzimática , Proteínas Inibidoras de Apoptose/deficiência , Camundongos , Camundongos da Linhagem 129
2.
Cell ; 126(3): 571-82, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16901789

RESUMO

Cystic fibrosis arises from the misfolding and premature degradation of CFTR Delta F508, a Cl- ion channel with a single amino acid deletion. Yet, the quality-control machinery that selects CFTR Delta F508 for degradation and the mechanism for its misfolding are not well defined. We identified an ER membrane-associated ubiquitin ligase complex containing the E3 RMA1, the E2 Ubc6e, and Derlin-1 that cooperates with the cytosolic Hsc70/CHIP E3 complex to triage CFTR and CFTR Delta F508. Derlin-1 serves to retain CFTR in the ER membrane and interacts with RMA1 and Ubc6e to promote CFTR's proteasomal degradation. RMA1 is capable of recognizing folding defects in CFTR Delta F508 coincident with translation, whereas the CHIP E3 appears to act posttranslationally. A folding defect in CFTR Delta F508 detected by RMA1 involves the inability of CFTR's second membrane-spanning domain to productively interact with amino-terminal domains. Thus, the RMA1 and CHIP E3 ubiquitin ligases act sequentially in ER membrane and cytosol to monitor the folding status of CFTR and CFTR Delta F508.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
3.
J Biol Chem ; 280(46): 38673-81, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16169850

RESUMO

The cytoplasm is protected against the perils of protein misfolding by two mechanisms: molecular chaperones (which facilitate proper folding) and the ubiquitin-proteasome system, which regulates degradation of misfolded proteins. CHIP (carboxyl terminus of Hsp70-interacting protein) is an Hsp70-associated ubiquitin ligase that participates in this process by ubiquitylating misfolded proteins associated with cytoplasmic chaperones. Mechanisms that regulate the activity of CHIP are, at present, poorly understood. Using a proteomics approach, we have identified BAG2, a previously uncharacterized BAG domain-containing protein, as a common component of CHIP holocomplexes in vivo. Binding assays indicate that BAG2 associates with CHIP as part of a ternary complex with Hsc70, and BAG2 colocalizes with CHIP under both quiescent conditions and after heat shock. In vitro and in vivo ubiquitylation assays indicate that BAG2 is an efficient and specific inhibitor of CHIP-dependent ubiquitin ligase activity. This activity is due, in part, to inhibition of interactions between CHIP and its cognate ubiquitin-conjugating enzyme, UbcH5a, which may in turn be facilitated by ATP-dependent remodeling of the BAG2-Hsc70-CHIP heterocomplex. The association of BAG2 with CHIP provides a cochaperone-dependent regulatory mechanism for preventing unregulated ubiquitylation of misfolded proteins by CHIP.


Assuntos
Citoplasma/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Linhagem Celular , Cromatina/química , Imunoprecipitação da Cromatina , Proteínas de Drosophila/química , Deleção de Genes , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico HSP70/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Ligação ao Ferro/química , Espectrometria de Massas , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/química , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Fatores de Tempo , Transfecção , Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo
4.
Methods Mol Biol ; 301: 293-303, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15917641

RESUMO

Components of the ubiquitin-proteasome system function on the surface of the endoplasmic reticulum (ER) to select misfolded proteins for degradation. Herein we describe methods that allow for the study of the pathway for proteasomal degradation of the cystic fibrosis transmembrane conductance regulator (CFTR). The experimental system described employs transiently transfected HEK-293 cells and is utilized to monitor the biogenesis of CFTR by Western blot and pulse-chase analysis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Expressão Gênica , Humanos , Modelos Moleculares , Transfecção
5.
J Cell Biol ; 167(6): 1075-85, 2004 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-15611333

RESUMO

CFTRDeltaF508 exhibits a correctable protein-folding defect that leads to its misfolding and premature degradation, which is the cause of cystic fibrosis (CF). Herein we report on the characterization of the CFTRDeltaF508 biogenic intermediate that is selected for proteasomal degradation and identification of cellular components that polyubiquitinate CFTRDeltaF508. Nonubiquitinated CFTRDeltaF508 accumulates in a kinetically trapped, but folding competent conformation, that is maintained in a soluble state by cytosolic Hsc70. Ubiquitination of Hsc70-bound CFTRDeltaF508 requires CHIP, a U box containing cytosolic cochaperone. CHIP is demonstrated to function as a scaffold that nucleates the formation of a multisubunit E3 ubiquitin ligase whose reconstituted activity toward CFTR is dependent upon Hdj2, Hsc70, and the E2 UbcH5a. Inactivation of the Hsc70-CHIP E3 leads CFTRDeltaF508 to accumulate in a nonaggregated state, which upon lowering of cell growth temperatures, can fold and reach the cell surface. Inhibition of CFTRDeltaF508 ubiquitination can increase its cell surface expression and may provide an approach to treat CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSC70 , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
J Biol Chem ; 277(24): 21675-82, 2002 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-11919183

RESUMO

Sis1 is an essential yeast Type II Hsp40 protein that assists cytosolic Hsp70 Ssa1 in the facilitation of processes that include translation initiation, the prevention of protein aggregation, and proteasomal protein degradation. An essential function of Sis1 and other Hsp40 proteins is the binding and delivery of non-native polypeptides to Hsp70. How Hsp40s function as molecular chaperones is unknown. The crystal structure of a Sis1 fragment that retains peptide-binding activity suggests that Type II Hsp40s utilize hydrophobic residues located in a solvent-exposed patch on carboxyl-terminal domain I to bind non-native polypeptides. To test this model, amino acid residues Val-184, Leu-186, Lys-199, Phe-201, Ile-203, and Phe-251, which form a depression in carboxyl-terminal domain I, were mutated, and the ability of Sis1 mutants to support cell viability and function as molecular chaperones was examined. We report that Lys-199, Phe-201, and Phe-251 are essential for cell viability and required for Sis1 polypeptide binding activity. Sis1 I203T could support normal cell growth, but when purified it exhibited severe defects in chaperone function. These data identify essential residues in Sis1 that function in polypeptide binding and help define the nature of the polypeptide-binding site in Type II Hsp40 proteins.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/fisiologia , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Dimerização , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/química , Isoleucina/química , Cinética , Lactalbumina/química , Leucina/química , Luciferases/metabolismo , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Peptídeos/química , Fenótipo , Fenilalanina/química , Reação em Cadeia da Polimerase , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Fatores de Tempo , Valina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...