Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 253: 126703, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32294600

RESUMO

The potential of solid olive wastes-based adsorbent (CuO-OC) with photocatalytic power was established for the removal of total phenolics and photocatalytic discolourization of high strength olive mill wastewater (OMW). Clear insight of the FTIR and Brunauer-Emmett-Teller analyses showed that oxygen-containing functional groups of CuO-OC likely participated in the adsorption of total phenols from the OMW via a π-π interaction, hydrogen bonding and electrostatic interaction. Also, the total pore volume of CuO-OC decreased from 0.068 to 0.052 cm3 g-1 after adsorption, which suggested that phenolics were trapped within the micro- and mesopores of CuO-OC. The adsorption kinetics revealed that ∼82.7-95% of the phenolic compounds were removed within the first 360 min which is relatively faster than adsorbents and methods reported elsewhere. The isotherm results showed that Redlich-Peterson equation fit the experimental data very well with least error (χ2 = 1.46-3.19) and high correlation coefficients (0.992-0.996), which suggested a mixture of hetero- and monolayer coverage of the phenolics on the CuO-OC surface. Results obtained herein are of practical interest and the reuse efficiency of CuO-OC remained ∼60% after 5 successive recycling.


Assuntos
Fenol/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Cobre , Resíduos Industriais/análise , Cinética , Nanocompostos/química , Olea , Fenóis/análise , Reciclagem , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA